Skip to main content
Erschienen in:
Buchtitelbild

2017 | Supplement | Buchkapitel

1. Introduction

verfasst von : Oxana Vasilievna Kharissova, Boris Ildusovich Kharisov

Erschienen in: Solubilization and Dispersion of Carbon Nanotubes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The carbon nanotubes (CNTs), one of the best novel nanostructures [1] and classic objects in nanotechnology, form bundle-like structures with very complex morphologies with a high number of Van der Waals interactions, causing extremely poor solubility in water or organic solvents. Due to their exceptional combination of mechanical, thermal, chemical, and electronic properties, single-walled (SWNTs or SWCNTs) and multiwalled carbon nanotubes (MWNTs or MWCNTs) are considered as unique materials, with very promising future applications, especially in the field of nanotechnology, nanoelectronics, and composite materials. Additionally, CNTs are becoming highly attractive molecules for applications in medicinal chemistry. At present, potential biological and medical applications [2] of CNTs have been little explored, in particular for drug delivery purposes [3]. The main difficulty to integrate such materials into biological systems derives from their lack of solubility in physiological solutions. Functionalization of CNTs with the assistance of biological molecules remarkably improves the solubility of nanotubes in aqueous or organic environment and, thus, facilitates the development of novel biotechnology, biomedicine, and bioengineering. Many of these applications require an increased “solubility” of CNTs in solvents, first of all in water, especially for biological applications. This could be reached by their functionalization, which is a very actively discussed topic in contemporary literature because the planned modification of CNT properties is believed to open the road toward real nanotechnology applications [4]. It is difficult to prepare an aqueous dispersion of CNTs stable for months; their insolubility has been a limitation for the practical applications of this unique material. Proper dispersion of CNT materials is important to retaining the electronic properties of nanotubes. The redissoluble functional compound/CNT composites are needed for post-processing because CNT dispersions usually easily aggregate and therefore make additional processing very difficult.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.A. Rashad, R. Noaman, S.A. Mohammed, E. Yousif, Synthesis of carbon nanotube: A review. J. Nanosci. Technol 2(3), 155–162 (2016) A.A. Rashad, R. Noaman, S.A. Mohammed, E. Yousif, Synthesis of carbon nanotube: A review. J. Nanosci. Technol 2(3), 155–162 (2016)
2.
Zurück zum Zitat N. Bhandare, A. Narayana, Applications of nanotechnology in cancer: A literature review of imaging and treatment. Nuclear medicine & radiation therapy. J. Nucl. Med. Radiat. Ther 5, 4 (2014.) 9 pp N. Bhandare, A. Narayana, Applications of nanotechnology in cancer: A literature review of imaging and treatment. Nuclear medicine & radiation therapy. J. Nucl. Med. Radiat. Ther 5, 4 (2014.) 9 pp
3.
Zurück zum Zitat A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: A contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)CrossRef A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: A contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)CrossRef
4.
Zurück zum Zitat H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes. Synth. Met. 141(1), 113–122 (2004)CrossRef H. Kuzmany, A. Kukovecz, F. Simon, M. Holzweber, C. Kramberger, T. Pichler, Functionalization of carbon nanotubes. Synth. Met. 141(1), 113–122 (2004)CrossRef
5.
Zurück zum Zitat F. Liang, E.W. Billups. Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658, 2007 F. Liang, E.W. Billups. Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658, 2007
6.
Zurück zum Zitat J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson Functionalization of carbon nanotubes in acidic media. WO05113434, 2005 J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson Functionalization of carbon nanotubes in acidic media. WO05113434, 2005
7.
Zurück zum Zitat T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)CrossRef T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)CrossRef
8.
Zurück zum Zitat K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)CrossRef K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)CrossRef
9.
Zurück zum Zitat M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)CrossRef M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)CrossRef
10.
Zurück zum Zitat J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1), 1–41 (2003)CrossRef J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1), 1–41 (2003)CrossRef
11.
Zurück zum Zitat C. Backes. Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses, (2016) pp. 220 C. Backes. Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses, (2016) pp. 220
12.
Zurück zum Zitat M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, Blacklick, 2007), p. 540 M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, Blacklick, 2007), p. 540
13.
Zurück zum Zitat K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507CrossRef K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507CrossRef
14.
Zurück zum Zitat S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, Hoboken, 2004), p. 418CrossRef S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, Hoboken, 2004), p. 418CrossRef
15.
Zurück zum Zitat S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004), p. 224 S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, 2004), p. 224
16.
Zurück zum Zitat A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin/Heidelberg, 2008), p. 720CrossRef A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin/Heidelberg, 2008), p. 720CrossRef
17.
Zurück zum Zitat Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), art. no. 1130001 (2012)CrossRef Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), art. no. 1130001 (2012)CrossRef
18.
Zurück zum Zitat Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)CrossRef Y.Y. Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)CrossRef
19.
Zurück zum Zitat J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)CrossRef J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)CrossRef
20.
Zurück zum Zitat A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)CrossRef A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)CrossRef
21.
Zurück zum Zitat X. Xin, G. Xu, H. Li, Dispersion and property manipulation of carbon nanotubes by self-assemibles of amphiphilic molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, Rijeka, Croatia, 2013), pp. 255–273 X. Xin, G. Xu, H. Li, Dispersion and property manipulation of carbon nanotubes by self-assemibles of amphiphilic molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, Rijeka, Croatia, 2013), pp. 255–273
22.
Zurück zum Zitat M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, Amsterdam, The Netherlands, 2016), p. 536 M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, Amsterdam, The Netherlands, 2016), p. 536
23.
Zurück zum Zitat G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, 2013), p. 128 G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, 2013), p. 128
24.
Zurück zum Zitat S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)CrossRef S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)CrossRef
26.
Zurück zum Zitat S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRef S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRef
27.
Zurück zum Zitat J. Njuguna, O. Arda Vanli, R. Liang, A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015, 11 (2015.) Article ID 463156CrossRef J. Njuguna, O. Arda Vanli, R. Liang, A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc. 2015, 11 (2015.) Article ID 463156CrossRef
28.
Zurück zum Zitat M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6(1), 16–27 (2006) M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6(1), 16–27 (2006)
29.
Zurück zum Zitat D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)CrossRef D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)CrossRef
30.
Zurück zum Zitat N. Nakashima, T. Fujigaya, Fundamentals and applications of soluble carbon nanotubes. Chem. Lett. 36(6), 692 (2007)CrossRef N. Nakashima, T. Fujigaya, Fundamentals and applications of soluble carbon nanotubes. Chem. Lett. 36(6), 692 (2007)CrossRef
31.
Zurück zum Zitat L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)CrossRef L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)CrossRef
32.
Zurück zum Zitat A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef
33.
Zurück zum Zitat P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef
34.
Zurück zum Zitat R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)CrossRef R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)CrossRef
35.
Zurück zum Zitat N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)CrossRef N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)CrossRef
36.
Zurück zum Zitat H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6, 16–27 (2006) H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechnol. 6, 16–27 (2006)
37.
Zurück zum Zitat Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)CrossRef Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)CrossRef
38.
Zurück zum Zitat F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. 38(12), 1109–1122 (2007)CrossRef F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. 38(12), 1109–1122 (2007)CrossRef
39.
Zurück zum Zitat M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh, Critical review on nanofluids: Preparation, characterization, and applications. J. Nanomater. 2016, 22 (2016.) Article ID 6717624CrossRef M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh, Critical review on nanofluids: Preparation, characterization, and applications. J. Nanomater. 2016, 22 (2016.) Article ID 6717624CrossRef
40.
Zurück zum Zitat M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840 (2016.) 17 ppCrossRef M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840 (2016.) 17 ppCrossRef
41.
Zurück zum Zitat C. Kleinstreuer, Z. Xu, Mathematical modeling and computer simulations of nanofluid flow with applications to cooling and lubrication. Fluids 1, 16 (2016.) 33 ppCrossRef C. Kleinstreuer, Z. Xu, Mathematical modeling and computer simulations of nanofluid flow with applications to cooling and lubrication. Fluids 1, 16 (2016.) 33 ppCrossRef
42.
Zurück zum Zitat S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)CrossRef S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)CrossRef
43.
Zurück zum Zitat S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluidbased direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016) S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluidbased direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016)
Metadaten
Titel
Introduction
verfasst von
Oxana Vasilievna Kharissova
Boris Ildusovich Kharisov
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-62950-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.