Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Xiaojin Zhang, Fan Xia

Erschienen in: Biosensors Based on Sandwich Assays

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The sandwich assays are one of the mainstays in the fields of clinical diagnostics, molecular detection, and environmental monitoring due to their high specificity and good sensitivity for the detection of analytes. Owing to the development of chemistry and material science, the sandwich assays have been developed vigorously with thousands of published papers to date. To further improve the sensitivity, supersandwich assays emerge as the times require. In this chapter, we will introduce the sandwich assays and briefly discuss the applications of the sandwich assays in the detection of proteins, nucleic acids, small molecules, ions, and cells as well as supersandwich assays. The discussion in detail can be found in subsequent chapters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao LX, Sun L, Chu XG (2009) Chemiluminescence immunoassay. TrAC-trends. Anal Chem 28:404–415 Zhao LX, Sun L, Chu XG (2009) Chemiluminescence immunoassay. TrAC-trends. Anal Chem 28:404–415
2.
Zurück zum Zitat Fu XL, Chen LX, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137CrossRef Fu XL, Chen LX, Choo J (2017) Optical nanoprobes for ultrasensitive immunoassay. Anal Chem 89:124–137CrossRef
3.
Zurück zum Zitat Pei XM, Zhang B, Tang J, Liu BQ, Lai WQ, Tang DP (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRef Pei XM, Zhang B, Tang J, Liu BQ, Lai WQ, Tang DP (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRef
4.
Zurück zum Zitat Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRef Shen JW, Li YB, Gu HS, Xia F, Zuo XL (2014) Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 114:7631–7677CrossRef
5.
Zurück zum Zitat Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR (2016) Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res 49:775–783CrossRef Liu R, Zhang SX, Wei C, Xing Z, Zhang SC, Zhang XR (2016) Metal stable isotope tagging: renaissance of radioimmunoassay for multiplex and absolute quantification of biomolecules. Acc Chem Res 49:775–783CrossRef
6.
Zurück zum Zitat Yin YM, Cao Y, Xu YY, Li GX (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11:5078–5095CrossRef Yin YM, Cao Y, Xu YY, Li GX (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11:5078–5095CrossRef
7.
Zurück zum Zitat Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507CrossRef Smith DS, Eremin SA (2008) Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem 391:1499–1507CrossRef
8.
Zurück zum Zitat Fojta M, Danhel A, Havran L, Vyskocil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC-trends Anal Chem 79:160–167CrossRef Fojta M, Danhel A, Havran L, Vyskocil V (2016) Recent progress in electrochemical sensors and assays for DNA damage and repair. TrAC-trends Anal Chem 79:160–167CrossRef
9.
Zurück zum Zitat Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44:1687–1702CrossRef Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44:1687–1702CrossRef
10.
Zurück zum Zitat Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716CrossRef Unser S, Bruzas I, He J, Sagle L (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15:15684–15716CrossRef
11.
Zurück zum Zitat Teste B, Descroix S (2012) Colloidal nanomaterial-based immunoassay. Nanomedicine 7:917–929CrossRef Teste B, Descroix S (2012) Colloidal nanomaterial-based immunoassay. Nanomedicine 7:917–929CrossRef
12.
Zurück zum Zitat Liu NN, Huang FJ, Lou XD, Xia F (2017) DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Sci China-Chem 60:311–318CrossRef Liu NN, Huang FJ, Lou XD, Xia F (2017) DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Sci China-Chem 60:311–318CrossRef
13.
Zurück zum Zitat Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511CrossRef Rusling JF, Kumar CV, Gutkind JS, Patel V (2010) Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135:2496–2511CrossRef
14.
Zurück zum Zitat Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25:3802–3819CrossRef Zhang Y, Guo YM, Xianyu YL, Chen WW, Zhao YY, Jiang XY (2013) Nanomaterials for ultrasensitive protein detection. Adv Mater 25:3802–3819CrossRef
15.
Zurück zum Zitat Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen XY (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561CrossRef Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen XY (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6:6546–6561CrossRef
16.
Zurück zum Zitat Chen CH, Luo M, Ye T, Li NX, Ji XH, He ZK (2015) Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst 140:4515–4520CrossRef Chen CH, Luo M, Ye T, Li NX, Ji XH, He ZK (2015) Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Analyst 140:4515–4520CrossRef
17.
Zurück zum Zitat Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Ed 49:1485–1488CrossRef Wang B, Yu C (2010) Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew Chem Int Ed 49:1485–1488CrossRef
18.
Zurück zum Zitat Lai GS, Yan F, Ju HX (2009) Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730–9736CrossRef Lai GS, Yan F, Ju HX (2009) Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. Anal Chem 81:9730–9736CrossRef
19.
Zurück zum Zitat Zhu DB, Hou XM, Xing D (2012) Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Anal Chim Acta 725:39–43CrossRef Zhu DB, Hou XM, Xing D (2012) Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein. Anal Chim Acta 725:39–43CrossRef
20.
Zurück zum Zitat Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344CrossRef Wang T, Yang Z, Lei C, Lei J, Zhou Y (2014) An integrated giant magnetoimpedance biosensor for detection of biomarker. Biosens Bioelectron 58:338–344CrossRef
21.
Zurück zum Zitat Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571CrossRef Wu B, Jiang R, Wang Q, Huang J, Yang XH, Wang KM, Li WS, Chen ND, Li Q (2016) Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay. Chem Commun 52:3568–3571CrossRef
22.
Zurück zum Zitat Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRef Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349CrossRef
23.
Zurück zum Zitat Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581CrossRef Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581CrossRef
24.
Zurück zum Zitat Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758CrossRef Nakano S, Miyoshi D, Sugimoto N (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 114:2733–2758CrossRef
25.
Zurück zum Zitat Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50:1–37CrossRef Wachowius F, Attwater J, Holliger P (2017) Nucleic acids: function and potential for abiogenesis. Q Rev Biophys 50:1–37CrossRef
26.
Zurück zum Zitat Gerasimova YV, Kolpashchikov DM (2014) Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 43:6405–6438CrossRef Gerasimova YV, Kolpashchikov DM (2014) Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev 43:6405–6438CrossRef
27.
Zurück zum Zitat Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H (2016) Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng 2:278–294CrossRef Safavieh M, Kanakasabapathy MK, Tarlan F, Ahmed MU, Zourob M, Asghar W, Shafiee H (2016) Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng 2:278–294CrossRef
28.
Zurück zum Zitat Veigas B, Fortunato E, Baptista PV (2015) Field effect sensors for nucleic acid detection: recent advances and future perspectives. Sensors 15:10380–10398CrossRef Veigas B, Fortunato E, Baptista PV (2015) Field effect sensors for nucleic acid detection: recent advances and future perspectives. Sensors 15:10380–10398CrossRef
29.
Zurück zum Zitat Smith SJ, Nemr CR, Kelley SO (2017) Chemistry-driven approaches for ultrasensitive nucleic acid detection. J Am Chem Soc 139:1020–1028CrossRef Smith SJ, Nemr CR, Kelley SO (2017) Chemistry-driven approaches for ultrasensitive nucleic acid detection. J Am Chem Soc 139:1020–1028CrossRef
30.
Zurück zum Zitat Rodiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168CrossRef Rodiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168CrossRef
31.
Zurück zum Zitat Ying YL, Zhang JJ, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161CrossRef Ying YL, Zhang JJ, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161CrossRef
32.
Zurück zum Zitat Hartman MR, Ruiz RCH, Hamada S, Xu CY, Yancey KG, Yu Y, Han W, Luo D (2013) Point-of-care nucleic acid detection using nanotechnology. Nanoscale 5:10141–10154CrossRef Hartman MR, Ruiz RCH, Hamada S, Xu CY, Yancey KG, Yu Y, Han W, Luo D (2013) Point-of-care nucleic acid detection using nanotechnology. Nanoscale 5:10141–10154CrossRef
33.
Zurück zum Zitat Guo J, Ju JY, Turro NJ (2012) Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 402:3115–3125CrossRef Guo J, Ju JY, Turro NJ (2012) Fluorescent hybridization probes for nucleic acid detection. Anal Bioanal Chem 402:3115–3125CrossRef
34.
Zurück zum Zitat Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang XJ, Liu GD (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584CrossRef Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang XJ, Liu GD (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584CrossRef
35.
Zurück zum Zitat Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B-Chem 121:158–177CrossRef Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuator B-Chem 121:158–177CrossRef
36.
Zurück zum Zitat Huang JH, Su XF, Li ZG (2017) Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 96:127–139CrossRef Huang JH, Su XF, Li ZG (2017) Metal ion detection using functional nucleic acids and nanomaterials. Biosens Bioelectron 96:127–139CrossRef
37.
Zurück zum Zitat Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433CrossRef Liu DB, Wang Z, Jiang XY (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433CrossRef
38.
Zurück zum Zitat Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223CrossRef Alvarez-Puebla RA, Liz-Marzan LM (2012) SERS detection of small inorganic molecules and ions. Angew Chem Int Ed 51:11214–11223CrossRef
39.
Zurück zum Zitat Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical detection of metal ions. Analyst 141:4262–4271CrossRef Zhao WW, Xu JJ, Chen HY (2016) Photoelectrochemical detection of metal ions. Analyst 141:4262–4271CrossRef
40.
Zurück zum Zitat Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, Xu Q, Wang X, Lou XH, He M, Xiao Y (2015) Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem 87:7712–7719CrossRef Zhao T, Liu R, Ding XF, Zhao JC, Yu HX, Wang L, Xu Q, Wang X, Lou XH, He M, Xiao Y (2015) Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal Chem 87:7712–7719CrossRef
41.
Zurück zum Zitat Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767CrossRef Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12:1753–1767CrossRef
42.
Zurück zum Zitat Arya SK, Lim B, Rahman ARA (2013) Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13:1995–2027CrossRef Arya SK, Lim B, Rahman ARA (2013) Enrichment, detection and clinical significance of circulating tumor cells. Lab Chip 13:1995–2027CrossRef
43.
Zurück zum Zitat Castro CM, Ghazani AA, Chung J, Shao HL, Issadore D, Yoon TJ, Weissleder R, Lee H (2014) Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip 14:14–23CrossRef Castro CM, Ghazani AA, Chung J, Shao HL, Issadore D, Yoon TJ, Weissleder R, Lee H (2014) Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. Lab Chip 14:14–23CrossRef
44.
Zurück zum Zitat Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM (2013) Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip 13:3163–3182CrossRef Yu L, Ng SR, Xu Y, Dong H, Wang YJ, Li CM (2013) Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells. Lab Chip 13:3163–3182CrossRef
45.
Zurück zum Zitat Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62CrossRef Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62CrossRef
46.
Zurück zum Zitat Lin M, Chen JF, Lu YT, Zhang Y, Song JZ, Hou S, Ke ZF, Tseng HR (2014) Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 47:2941–2950CrossRef Lin M, Chen JF, Lu YT, Zhang Y, Song JZ, Hou S, Ke ZF, Tseng HR (2014) Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 47:2941–2950CrossRef
47.
Zurück zum Zitat Wu MS, Liu Z, Xu JJ, Chen HY (2016) Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem 3:429–435CrossRef Wu MS, Liu Z, Xu JJ, Chen HY (2016) Highly specific electrochemiluminescence detection of cancer cells with a closed bipolar electrode. ChemElectroChem 3:429–435CrossRef
48.
Zurück zum Zitat Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348CrossRef Xia F, White RJ, Zuo XL, Patterson A, Xiao Y, Kang D, Gong X, Plaxco KW, Heeger AJ (2010) An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J Am Chem Soc 132:14346–14348CrossRef
49.
Zurück zum Zitat Liu NN, Jiang YN, Zhou YH, Xia F, Guo W, Jiang L (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52:2007–2011CrossRef Liu NN, Jiang YN, Zhou YH, Xia F, Guo W, Jiang L (2013) Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. Angew Chem Int Ed 52:2007–2011CrossRef
50.
Zurück zum Zitat Wei BM, Liu NN, Zhang JT, Ou XW, Duan RX, Yang ZK, Lou XD, Xia F (2015) Regulation of DNA self-assembly and DNA hybridization by chiral molecules with corresponding biosensor applications. Anal Chem 87:2058–2062CrossRef Wei BM, Liu NN, Zhang JT, Ou XW, Duan RX, Yang ZK, Lou XD, Xia F (2015) Regulation of DNA self-assembly and DNA hybridization by chiral molecules with corresponding biosensor applications. Anal Chem 87:2058–2062CrossRef
51.
Zurück zum Zitat Wei BM, Zhang JT, Wang HB, Xia F (2016) A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 141:4313–4318CrossRef Wei BM, Zhang JT, Wang HB, Xia F (2016) A new electrochemical aptasensor based on a dual-signaling strategy and supersandwich assay. Analyst 141:4313–4318CrossRef
52.
Zurück zum Zitat Wei BM, Zhang TC, Ou XW, Li XC, Lou XD, Xia F (2016) Stereochemistry-guided DNA probe for single nucleotide polymorphisms analysis. ACS Appl Mater Interfaces 8:15911–15916CrossRef Wei BM, Zhang TC, Ou XW, Li XC, Lou XD, Xia F (2016) Stereochemistry-guided DNA probe for single nucleotide polymorphisms analysis. ACS Appl Mater Interfaces 8:15911–15916CrossRef
53.
Zurück zum Zitat Jiang YN, Liu NN, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401CrossRef Jiang YN, Liu NN, Guo W, Xia F, Jiang L (2012) Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. J Am Chem Soc 134:15395–15401CrossRef
54.
Zurück zum Zitat Liu NN, Hou RZ, Gao PC, Lou XD, Xia F (2016) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141:3626–3629CrossRef Liu NN, Hou RZ, Gao PC, Lou XD, Xia F (2016) Sensitive Zn2+ sensor based on biofunctionalized nanopores via combination of DNAzyme and DNA supersandwich structures. Analyst 141:3626–3629CrossRef
55.
Zurück zum Zitat Khanna P, Walt DR (2015) Salivary diagnostics using a portable point-of-service platform: a review. Clin Ther 37:498–504CrossRef Khanna P, Walt DR (2015) Salivary diagnostics using a portable point-of-service platform: a review. Clin Ther 37:498–504CrossRef
56.
Zurück zum Zitat Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129CrossRef Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129CrossRef
57.
Zurück zum Zitat Roder M, Vieths S, Holzhauser T (2009) Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies. Anal Bioanal Chem 395:103–109CrossRef Roder M, Vieths S, Holzhauser T (2009) Commercial lateral flow devices for rapid detection of peanut (Arachis hypogaea) and hazelnut (Corylus avellana) cross-contamination in the industrial production of cookies. Anal Bioanal Chem 395:103–109CrossRef
58.
Zurück zum Zitat Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2014) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181:223–230CrossRef Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2014) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181:223–230CrossRef
59.
Zurück zum Zitat Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14CrossRef Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14CrossRef
60.
Zurück zum Zitat Chen M, Yang H, Rong LY, Chen XQ (2016) A gas-diffusion microfluidic paper-based analytical device (mu PAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519CrossRef Chen M, Yang H, Rong LY, Chen XQ (2016) A gas-diffusion microfluidic paper-based analytical device (mu PAD) coupled with portable surface-enhanced Raman scattering (SERS): facile determination of sulphite in wines. Analyst 141:5511–5519CrossRef
61.
Zurück zum Zitat Liu D, Li XR, Zhou JK, Liu SB, Tian T, Song YL, Zhu Z, Zhou LJ, Ji TH, Yang CY (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338CrossRef Liu D, Li XR, Zhou JK, Liu SB, Tian T, Song YL, Zhu Z, Zhou LJ, Ji TH, Yang CY (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338CrossRef
Metadaten
Titel
Introduction
verfasst von
Xiaojin Zhang
Fan Xia
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7835-4_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.