Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Marco Vigilante, Patrick Reynaert

Erschienen in: 5G and E-Band Communication Circuits in Deep-Scaled CMOS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The evolution of mobile communication has a deep impact on the daily life of millions of people all over the world. In just a few decades, we have witnessed a revolution in the way people communicate, share ideas and live. This is still happening and will continue in the future. The 1G analog cellular system was introduced in the ’80s. But it is only with the 2nd generation 2G and the switch to digital cellular system that in the ’90s the mobile communication reached the mass level production, connecting people all over the world. Today, thanks to 3G (’00s) and 4G (’10s) people are able to use mobile devices to connect to the internet. This phenomenon is referred as people-to-thing communication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this example we assume that the integrated power amplifier is optimized for maximum linear output power and power added efficiency for a given technology and N PAs are integrated in the phased array.
 
2
It is worth mentioning that an array with N elements used both at the TX and at the RX side does provide \(N^3\) benefit in the link budget if and only if compared to a single antenna with an area A / N. Such a comparison is obviously not fair. When an antenna with the same area of the full array is used in combination with an ideal big PA that delivers N times larger output power, the \(N^3\) benefit disappears. However, (1) phased arrays enable electrical beam steering and do not need a mechanical actuator. Therefore, highly directive communication between the base station and the user equipment would be possible, enabling spacial reused. This technique in combination with the classical frequency and time reuse is expected to significantly increase the capacity of the whole wireless system. And, (2) as it will be discussed in Chap. 7, implementing a big PA that delivers N times larger output power at mm-Wave might not be possible or may result in unacceptably low efficiency.
 
3
Low frequency with respect to the modulation bandwidth of the signal \(BW_{RF}\).
 
4
In this design example we consider a modulated signal bandwidth of 500 MHz. However, when the \(BW_{RF}\) is increased to 4.75 GHz, the SNR degradation due to PN does not change significantly.
 
5
It is worth mentioning that in this study we consider the effect of the PN of a single PLL on the SNR of the full system. When two PLLs with the same phase noise profile are used for the TX and RX paths, 3 dB better PN is needed to keep the same SNR.
 
Literatur
1.
Zurück zum Zitat S. Onoe, 1.3 evolution of 5G mobile technology toward 1 2020 and beyond, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 23–28 S. Onoe, 1.3 evolution of 5G mobile technology toward 1 2020 and beyond, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 23–28
2.
Zurück zum Zitat ITU-R Recommendation M.2083-0, IMT vision - framework and overall objectives of the future development of IMT for 2020 and beyond (2015), p. 21 ITU-R Recommendation M.2083-0, IMT vision - framework and overall objectives of the future development of IMT for 2020 and beyond (2015), p. 21
3.
Zurück zum Zitat P. Reynaert, W. Steyaert, M. Vigilante, RF CMOS. Nanoelectronics: Materials, Devices, Applications, 2 Volumes (2017) P. Reynaert, W. Steyaert, M. Vigilante, RF CMOS. Nanoelectronics: Materials, Devices, Applications, 2 Volumes (2017)
4.
Zurück zum Zitat W.M. Holt, 1.1 Moore’s law: a path going forward, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 8–13 W.M. Holt, 1.1 Moore’s law: a path going forward, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 8–13
6.
Zurück zum Zitat J. Wells, Multigigabit Microwave and Millimeter-Wave Wireless Communications (Artech House, Boston, 2010) J. Wells, Multigigabit Microwave and Millimeter-Wave Wireless Communications (Artech House, Boston, 2010)
7.
Zurück zum Zitat L. Reger, 1.4 the road ahead for securely-connected cars, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 29–33 L. Reger, 1.4 the road ahead for securely-connected cars, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 29–33
8.
Zurück zum Zitat W. Sansen, 1.3 analog CMOS from 5 micrometer to 5 nanometer, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–6 W. Sansen, 1.3 analog CMOS from 5 micrometer to 5 nanometer, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–6
9.
Zurück zum Zitat B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New Jersey, 2011) B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New Jersey, 2011)
11.
Zurück zum Zitat D.M. Pozar, Microwave Engineering (Wiley, New York, 2009) D.M. Pozar, Microwave Engineering (Wiley, New York, 2009)
12.
Zurück zum Zitat L. Iotti, A. Mazzanti, F. Svelto, Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-Band adaptive modulation links. IEEE J. Solid-State Circuits 52(7), 1703–1718 (2017)CrossRef L. Iotti, A. Mazzanti, F. Svelto, Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-Band adaptive modulation links. IEEE J. Solid-State Circuits 52(7), 1703–1718 (2017)CrossRef
13.
Zurück zum Zitat T. Siriburanon et al., A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11ad. IEEE J. Solid-State Circuits 51(5), 1246–1260 (2016)CrossRef T. Siriburanon et al., A low-power low-noise mm-wave subsampling PLL using dual-step-mixing ILFD and tail-coupling quadrature injection-locked oscillator for IEEE 802.11ad. IEEE J. Solid-State Circuits 51(5), 1246–1260 (2016)CrossRef
14.
Zurück zum Zitat W. Wu, R.B. Staszewski, J.R. Long, A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J. Solid-State Circuits 49(5), 1081–1096 (2014)CrossRef W. Wu, R.B. Staszewski, J.R. Long, A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J. Solid-State Circuits 49(5), 1081–1096 (2014)CrossRef
15.
Zurück zum Zitat S.C. Cripps, Advanced Techniques in RF Power Amplifier Design (Artech House, Boston, 2002) S.C. Cripps, Advanced Techniques in RF Power Amplifier Design (Artech House, Boston, 2002)
17.
Zurück zum Zitat M.D. McKinley et al., EVM calculation for broadband modulated signals, in 64th ARFTG Conference Digest 2004 M.D. McKinley et al., EVM calculation for broadband modulated signals, in 64th ARFTG Conference Digest 2004
18.
Zurück zum Zitat E. McCune, Practical Digital Wireless Signals (Cambridge University Press, Cambridge, 2010) E. McCune, Practical Digital Wireless Signals (Cambridge University Press, Cambridge, 2010)
19.
Zurück zum Zitat E. McCune, A technical foundation for RF CMOS power amplifiers: part 5: making a switch-mode power amplifier. IEEE Solid-State Circuits Mag. 8(3), 57–62 (Summer 2016) E. McCune, A technical foundation for RF CMOS power amplifiers: part 5: making a switch-mode power amplifier. IEEE Solid-State Circuits Mag. 8(3), 57–62 (Summer 2016)
20.
Zurück zum Zitat S. Kulkarni, P. Reynaert, 14.3 a push-pull mm-wave power amplifier with \(<\)0.8 AM-PM distortion in 40 nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA (2014), pp. 252–253 S. Kulkarni, P. Reynaert, 14.3 a push-pull mm-wave power amplifier with \(<\)0.8 AM-PM distortion in 40 nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA (2014), pp. 252–253
21.
Zurück zum Zitat S. Shakib, H.C. Park, J. Dunworth, V. Aparin, K. Entesari, A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE J. Solid-State Circuits 51(12), 3020–3036 (2016)CrossRef S. Shakib, H.C. Park, J. Dunworth, V. Aparin, K. Entesari, A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE J. Solid-State Circuits 51(12), 3020–3036 (2016)CrossRef
22.
Zurück zum Zitat C.R. Chappidi, K. Sengupta, 20.2 a frequency-reconfigurable mm-wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 344–345 C.R. Chappidi, K. Sengupta, 20.2 a frequency-reconfigurable mm-wave power amplifier with active-impedance synthesis in an asymmetrical non-isolated combiner, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 344–345
23.
Zurück zum Zitat T.J. Rouphael, RF and Digital Signal Processing for Software-Defined Radio: a Multi-standard Multi-mode Approach (Newnes, Amsterdam, 2009) T.J. Rouphael, RF and Digital Signal Processing for Software-Defined Radio: a Multi-standard Multi-mode Approach (Newnes, Amsterdam, 2009)
24.
Zurück zum Zitat P. Reynaert, M. Steyaert, RF Power Amplifiers For Mobile Communications (Springer Science & Business Media, New York, 2006) P. Reynaert, M. Steyaert, RF Power Amplifiers For Mobile Communications (Springer Science & Business Media, New York, 2006)
25.
Zurück zum Zitat ITU-R P.837-4, Characteristics of precipitation for propagation modelling (2003) ITU-R P.837-4, Characteristics of precipitation for propagation modelling (2003)
26.
Zurück zum Zitat ICT-317669-METIS/D5.1, Intermediate description of the spectrum needs and usage principles (2013) ICT-317669-METIS/D5.1, Intermediate description of the spectrum needs and usage principles (2013)
Metadaten
Titel
Introduction
verfasst von
Marco Vigilante
Patrick Reynaert
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72646-5_1

Neuer Inhalt