Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Serge Torres

Erschienen in: Handbook of Floating-Point Arithmetic

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Representing and manipulating real numbers efficiently is required in many fields of science, engineering, finance, and more. Since the early years of electronic computing, many different ways of approximating real numbers on computers have been introduced. One can cite (this list is far from being exhaustive): fixed-point arithmetic, logarithmic [337, 585] and semi-logarithmic [444] number systems, intervals [428], continued fractions [349, 622], rational numbers [348] and possibly infinite strings of rational numbers [418], level-index number systems [100, 475], fixed-slash and floating-slash number systems [412], tapered floating-point arithmetic [432, 22], 2-adic numbers [623], and most recently unums and posits [228, 229].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For legal reasons, financial calculations frequently require special rounding rules that are very tricky to implement if the underlying arithmetic is binary: this is illustrated in [320, Section 2].
 
2
If p and β were real numbers, the value of β that would minimize β × p while letting β p be constant would be e = 2. 7182818⋯.
 
3
Even if sometimes you need to dive into the compiler documentation to find the right options; see Chapter 6
 
5
That conjecture asserts that there are infinitely many pairs of prime numbers that differ by 2.
 
7
See http://www.science20.com/news_articles/what_happens_bridge_when_one_side_ uses_mediterranean_sea_level_and_another_north_sea-121600.
 
8
Interestingly enough, the decimal value a 0 = 1. 71828182845904523536028747135 given in Program 1.2 is less than e − 1, but when rounded to the nearest binary64/double precision floating-point number, it becomes larger than e − 1.
 
Literatur
[9]
Zurück zum Zitat E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and G. L. Steele, Jr. Object-oriented units of measurement. In 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 384–403, 2004. E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and G. L. Steele, Jr. Object-oriented units of measurement. In 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 384–403, 2004.
[12]
Zurück zum Zitat American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754–1985, 1985. American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754–1985, 1985.
[13]
Zurück zum Zitat American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE Standard for Radix Independent Floating-Point Arithmetic. ANSI/IEEE Standard 854–1987, 1987. American National Standards Institute and Institute of Electrical and Electronic Engineers. IEEE Standard for Radix Independent Floating-Point Arithmetic. ANSI/IEEE Standard 854–1987, 1987.
[22]
Zurück zum Zitat A. Azmi and F. Lombardi. On a tapered floating point system. In 9th IEEE Symposium on Computer Arithmetic (ARITH-9), pages 2–9, September 1989. A. Azmi and F. Lombardi. On a tapered floating point system. In 9th IEEE Symposium on Computer Arithmetic (ARITH-9), pages 2–9, September 1989.
[63]
Zurück zum Zitat R. P. Brent. On the precision attainable with various floating-point number systems. IEEE Transactions on Computers, C-22(6):601–607, 1973.MathSciNetCrossRef R. P. Brent. On the precision attainable with various floating-point number systems. IEEE Transactions on Computers, C-22(6):601–607, 1973.MathSciNetCrossRef
[87]
Zurück zum Zitat F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R. Carlough. The IBM z900 decimal arithmetic unit. In 35th Asilomar Conference on Signals, Systems, and Computers, volume 2, pages 1335–1339, November 2001. F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R. Carlough. The IBM z900 decimal arithmetic unit. In 35th Asilomar Conference on Signals, Systems, and Computers, volume 2, pages 1335–1339, November 2001.
[89]
Zurück zum Zitat S. Carlough, A. Collura, S. Mueller, and M. Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In 20th IEEE Symposium on Computer Arithmetic (ARITH-20), pages 139–146, July 2011. S. Carlough, A. Collura, S. Mueller, and M. Kroener. The IBM zEnterprise-196 decimal floating-point accelerator. In 20th IEEE Symposium on Computer Arithmetic (ARITH-20), pages 139–146, July 2011.
[92]
Zurück zum Zitat P. E. Ceruzzi. The early computers of Konrad Zuse, 1935 to 1945. Annals of the History of Computing, 3(3):241–262, 1981.MathSciNetCrossRef P. E. Ceruzzi. The early computers of Konrad Zuse, 1935 to 1945. Annals of the History of Computing, 3(3):241–262, 1981.MathSciNetCrossRef
[93]
Zurück zum Zitat P. E. Ceruzzi. A History of Modern Computing. MIT Press, 2nd edition, 2003. P. E. Ceruzzi. A History of Modern Computing. MIT Press, 2nd edition, 2003.
[99]
Zurück zum Zitat C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland. Optical clocks and relativity. Science, 329(5999):1630–1633, 2010.CrossRef C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland. Optical clocks and relativity. Science, 329(5999):1630–1633, 2010.CrossRef
[100]
[104]
Zurück zum Zitat W. J. Cody. Static and dynamic numerical characteristics of floating-point arithmetic. IEEE Transactions on Computers, C-22(6):598–601, 1973.CrossRef W. J. Cody. Static and dynamic numerical characteristics of floating-point arithmetic. IEEE Transactions on Computers, C-22(6):598–601, 1973.CrossRef
[108]
Zurück zum Zitat T. Coe and P. T. P. Tang. It takes six ones to reach a flaw. In 12th IEEE Symposium on Computer Arithmetic (ARITH-12), pages 140–146, July 1995. T. Coe and P. T. P. Tang. It takes six ones to reach a flaw. In 12th IEEE Symposium on Computer Arithmetic (ARITH-12), pages 140–146, July 1995.
[116]
Zurück zum Zitat M. Cornea, C. Anderson, J. Harrison, P. T. P. Tang, E. Schneider, and C. Tsen. A software implementation of the IEEE 754R decimal floating-point arithmetic using the binary encoding format. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 29–37, June 2007. M. Cornea, C. Anderson, J. Harrison, P. T. P. Tang, E. Schneider, and C. Tsen. A software implementation of the IEEE 754R decimal floating-point arithmetic using the binary encoding format. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 29–37, June 2007.
[120]
Zurück zum Zitat M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness proofs outline for Newton–Raphson based floating-point divide and square root algorithms. In 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages 96–105, April 1999. M. A. Cornea-Hasegan, R. A. Golliver, and P. Markstein. Correctness proofs outline for Newton–Raphson based floating-point divide and square root algorithms. In 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages 96–105, April 1999.
[121]
Zurück zum Zitat M. F. Cowlishaw. Decimal floating-point: algorism for computers. In 16th IEEE Symposium on Computer Arithmetic (ARITH-16), pages 104–111, June 2003. M. F. Cowlishaw. Decimal floating-point: algorism for computers. In 16th IEEE Symposium on Computer Arithmetic (ARITH-16), pages 104–111, June 2003.
[122]
Zurück zum Zitat M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb. A decimal floating-point specification. In 15th IEEE Symposium on Computer Arithmetic (ARITH-15), pages 147–154, June 2001. M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb. A decimal floating-point specification. In 15th IEEE Symposium on Computer Arithmetic (ARITH-15), pages 147–154, June 2001.
[124]
Zurück zum Zitat X. Cui, W. Liu, D. Wenwen, and F. Lombardi. A parallel decimal multiplier using hybrid binary coded decimal (BCD) codes. In 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 150–155, July 2016. X. Cui, W. Liu, D. Wenwen, and F. Lombardi. A parallel decimal multiplier using hybrid binary coded decimal (BCD) codes. In 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 150–155, July 2016.
[125]
Zurück zum Zitat A. Cuyt, B. Verdonk, S. Becuwe, and P. Kuterna. A remarkable example of catastrophic cancellation unraveled. Computing, 66:309–320, 2001.MathSciNetCrossRef A. Cuyt, B. Verdonk, S. Becuwe, and P. Kuterna. A remarkable example of catastrophic cancellation unraveled. Computing, 66:309–320, 2001.MathSciNetCrossRef
[169]
Zurück zum Zitat R. Descartes. La Géométrie. Paris, 1637. R. Descartes. La Géométrie. Paris, 1637.
[191]
Zurück zum Zitat M. A. Erle, M. J. Schulte, and B. J. Hickmann. Decimal floating-point multiplication via carry-save addition. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 46–55, June 2007. M. A. Erle, M. J. Schulte, and B. J. Hickmann. Decimal floating-point multiplication via carry-save addition. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 46–55, June 2007.
[205]
Zurück zum Zitat D. Fowler and E. Robson. Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia Mathematica, 25:366–378, 1998.MathSciNetCrossRef D. Fowler and E. Robson. Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia Mathematica, 25:366–378, 1998.MathSciNetCrossRef
[213]
Zurück zum Zitat G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A. Krygowski, B. M. Fleischer, and M. Kroener. The IBM eServer z990 floating-point unit. IBM Journal of Research and Development, 48(3.4):311–322, 2004.CrossRef G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A. Krygowski, B. M. Fleischer, and M. Kroener. The IBM eServer z990 floating-point unit. IBM Journal of Research and Development, 48(3.4):311–322, 2004.CrossRef
[228]
Zurück zum Zitat J. L. Gustafson. The End of Error: Unum Computing. Chapman & Hall/CRC Computational Science. Taylor & Francis, 2015.MATH J. L. Gustafson. The End of Error: Unum Computing. Chapman & Hall/CRC Computational Science. Taylor & Francis, 2015.MATH
[229]
Zurück zum Zitat J. L. Gustafson and I. Yonemoto. Beating floating point at its own game: Posit arithmetic. In Supercomputing Frontiers and Innovations, pages 71–86, July 2017. J. L. Gustafson and I. Yonemoto. Beating floating point at its own game: Posit arithmetic. In Supercomputing Frontiers and Innovations, pages 71–86, July 2017.
[240]
Zurück zum Zitat J. Harrison. A machine-checked theory of floating point arithmetic. In 12th International Conference in Theorem Proving in Higher Order Logics (TPHOLs), volume 1690 of Lecture Notes in Computer Science, pages 113–130, Nice, France, September 1999. J. Harrison. A machine-checked theory of floating point arithmetic. In 12th International Conference in Theorem Proving in Higher Order Logics (TPHOLs), volume 1690 of Lecture Notes in Computer Science, pages 113–130, Nice, France, September 1999.
[242]
Zurück zum Zitat J. Harrison. Formal verification of IA-64 division algorithms. In 13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume 1869 of Lecture Notes in Computer Science, pages 233–251, 2000. J. Harrison. Formal verification of IA-64 division algorithms. In 13th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), volume 1869 of Lecture Notes in Computer Science, pages 233–251, 2000.
[243]
Zurück zum Zitat J. Harrison. Floating-point verification using theorem proving. In Formal Methods for Hardware Verification, 6th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2006, volume 3965 of Lecture Notes in Computer Science, pages 211–242, Bertinoro, Italy, 2006.CrossRef J. Harrison. Floating-point verification using theorem proving. In Formal Methods for Hardware Verification, 6th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2006, volume 3965 of Lecture Notes in Computer Science, pages 211–242, Bertinoro, Italy, 2006.CrossRef
[250]
[259]
Zurück zum Zitat A. Hirshfeld. Eureka Man, The life and legacy of Archimedes. Walker & Company, 2009. A. Hirshfeld. Eureka Man, The life and legacy of Archimedes. Walker & Company, 2009.
[306]
Zurück zum Zitat P. Johnstone and F. E. Petry. Rational number approximation in higher radix floating-point systems. Computers & Mathematics with Applications, 25(6):103–108, 1993.MathSciNetCrossRef P. Johnstone and F. E. Petry. Rational number approximation in higher radix floating-point systems. Computers & Mathematics with Applications, 25(6):103–108, 1993.MathSciNetCrossRef
[337]
Zurück zum Zitat N. G. Kingsbury and P. J. W. Rayner. Digital filtering using logarithmic arithmetic. Electronic Letters, 7:56–58, 1971. Reprinted in [583].CrossRef N. G. Kingsbury and P. J. W. Rayner. Digital filtering using logarithmic arithmetic. Electronic Letters, 7:56–58, 1971. Reprinted in [583].CrossRef
[342]
Zurück zum Zitat D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, Reading, MA, 3rd edition, 1998. D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, Reading, MA, 3rd edition, 1998.
[348]
Zurück zum Zitat P. Kornerup and D. W. Matula. Finite-precision rational arithmetic: an arithmetic unit. IEEE Transactions on Computers, C-32:378–388, 1983.MathSciNetCrossRef P. Kornerup and D. W. Matula. Finite-precision rational arithmetic: an arithmetic unit. IEEE Transactions on Computers, C-32:378–388, 1983.MathSciNetCrossRef
[349]
Zurück zum Zitat P. Kornerup and D. W. Matula. Finite precision lexicographic continued fraction number systems. In 7th IEEE Symposium on Computer Arithmetic (ARITH-7), 1985. Reprinted in [584]. P. Kornerup and D. W. Matula. Finite precision lexicographic continued fraction number systems. In 7th IEEE Symposium on Computer Arithmetic (ARITH-7), 1985. Reprinted in [584].
[352]
Zurück zum Zitat H. Kuki and W. J. Cody. A statistical study of the accuracy of floating point number systems. Communications of the ACM, 16(4):223–230, 1973.MathSciNetCrossRef H. Kuki and W. J. Cody. A statistical study of the accuracy of floating point number systems. Communications of the ACM, 16(4):223–230, 1973.MathSciNetCrossRef
[369]
Zurück zum Zitat J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, and B. Levrard. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428:261–285, 2004.CrossRef J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. C. M. Correia, and B. Levrard. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428:261–285, 2004.CrossRef
[387]
Zurück zum Zitat C. Lichtenau, S. Carlough, and S. M. Mueller. Quad precision floating point on the IBM z13TM. 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 87–94, 2016. C. Lichtenau, S. Carlough, and S. M. Mueller. Quad precision floating point on the IBM z13TM. 23rd IEEE Symposium on Computer Arithmetic (ARITH-23), pages 87–94, 2016.
[393]
[412]
Zurück zum Zitat D. W. Matula and P. Kornerup. Finite precision rational arithmetic: Slash number systems. IEEE Transactions on Computers, 34(1):3–18, 1985.CrossRef D. W. Matula and P. Kornerup. Finite precision rational arithmetic: Slash number systems. IEEE Transactions on Computers, 34(1):3–18, 1985.CrossRef
[418]
Zurück zum Zitat V. Ménissier. Arithmétique Exacte. Ph.D. thesis, Université Pierre et Marie Curie, Paris, December 1994. In French. V. Ménissier. Arithmétique Exacte. Ph.D. thesis, Université Pierre et Marie Curie, Paris, December 1994. In French.
[428]
Zurück zum Zitat R. E. Moore. Interval analysis. Prentice Hall, 1966. R. E. Moore. Interval analysis. Prentice Hall, 1966.
[432]
Zurück zum Zitat R. Morris. Tapered floating point: A new floating-point representation. IEEE Transactions on Computers, 20(12):1578–1579, 1971.CrossRef R. Morris. Tapered floating point: A new floating-point representation. IEEE Transactions on Computers, 20(12):1578–1579, 1971.CrossRef
[436]
Zurück zum Zitat J.-M. Muller. Arithmétique des Ordinateurs. Masson, Paris, 1989. In French. J.-M. Muller. Arithmétique des Ordinateurs. Masson, Paris, 1989. In French.
[437]
Zurück zum Zitat J.-M. Muller. Algorithmes de division pour microprocesseurs: illustration à l’aide du “bug” du pentium. Technique et Science Informatiques, 14(8), 1995. J.-M. Muller. Algorithmes de division pour microprocesseurs: illustration à l’aide du “bug” du pentium. Technique et Science Informatiques, 14(8), 1995.
[444]
Zurück zum Zitat J.-M. Muller, A. Scherbyna, and A. Tisserand. Semi-logarithmic number systems. IEEE Transactions on Computers, 47(2):145–151, 1998.MathSciNetCrossRef J.-M. Muller, A. Scherbyna, and A. Tisserand. Semi-logarithmic number systems. IEEE Transactions on Computers, 47(2):145–151, 1998.MathSciNetCrossRef
[466]
Zurück zum Zitat J. Oberg. Why the Mars probe went off course. IEEE Spectrum, 36(12):34–39, 1999.CrossRef J. Oberg. Why the Mars probe went off course. IEEE Spectrum, 36(12):34–39, 1999.CrossRef
[475]
Zurück zum Zitat F. W. J. Olver and P. R. Turner. Implementation of level-index arithmetic using partial table look-up. In 8th IEEE Symposium on Computer Arithmetic (ARITH-8), May 1987. F. W. J. Olver and P. R. Turner. Implementation of level-index arithmetic using partial table look-up. In 8th IEEE Symposium on Computer Arithmetic (ARITH-8), May 1987.
[498]
Zurück zum Zitat C. Proust. Masters’ writings and students’ writings: School material in Mesopotamia. In Gueudet, Pepin, and Trouche, editors, Mathematics curriculum material and teacher documentation: from textbooks to shared living resources, pages 161–180. Springer, 2011.CrossRef C. Proust. Masters’ writings and students’ writings: School material in Mesopotamia. In Gueudet, Pepin, and Trouche, editors, Mathematics curriculum material and teacher documentation: from textbooks to shared living resources, pages 161–180. Springer, 2011.CrossRef
[504]
Zurück zum Zitat B. Randell. From analytical engine to electronic digital computer: the contributions of Ludgate, Torres, and Bush. IEEE Annals of the History of Computing, 4(4):327–341, 1982.MathSciNetCrossRef B. Randell. From analytical engine to electronic digital computer: the contributions of Ludgate, Torres, and Bush. IEEE Annals of the History of Computing, 4(4):327–341, 1982.MathSciNetCrossRef
[515]
Zurück zum Zitat R. Rojas, F. Darius, C. Göktekin, and G. Heyne. The reconstruction of Konrad Zuse’s Z3. IEEE Annals of the History of Computing, 27(3):23–32, 2005.MathSciNetCrossRef R. Rojas, F. Darius, C. Göktekin, and G. Heyne. The reconstruction of Konrad Zuse’s Z3. IEEE Annals of the History of Computing, 27(3):23–32, 2005.MathSciNetCrossRef
[518]
Zurück zum Zitat S. M. Rump. Algorithms for verified inclusions: theory and practice. In Reliability in Computing, Perspectives in Computing, pages 109–126, 1988. S. M. Rump. Algorithms for verified inclusions: theory and practice. In Reliability in Computing, Perspectives in Computing, pages 109–126, 1988.
[553]
Zurück zum Zitat C. Severance. IEEE 754: An interview with William Kahan. Computer, 31(3):114–115, 1998.CrossRef C. Severance. IEEE 754: An interview with William Kahan. Computer, 31(3):114–115, 1998.CrossRef
[585]
Zurück zum Zitat E. E. Swartzlander and A. G. Alexpoulos. The sign-logarithm number system. IEEE Transactions on Computers, 1975. Reprinted in [583]. E. E. Swartzlander and A. G. Alexpoulos. The sign-logarithm number system. IEEE Transactions on Computers, 1975. Reprinted in [583].
[613]
Zurück zum Zitat A. Vázquez. High-Performance Decimal Floating-Point Units. Ph.D. thesis, Universidade de Santiago de Compostela, 2009. A. Vázquez. High-Performance Decimal Floating-Point Units. Ph.D. thesis, Universidade de Santiago de Compostela, 2009.
[614]
Zurück zum Zitat A. Vázquez, E. Antelo, and P. Montuschi. A new family of high performance parallel decimal multipliers. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 195–204, 2007. A. Vázquez, E. Antelo, and P. Montuschi. A new family of high performance parallel decimal multipliers. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18), pages 195–204, 2007.
[622]
Zurück zum Zitat J. E. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE Transactions on Computers, 39(8), 1990. J. E. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE Transactions on Computers, 39(8), 1990.
[623]
[627]
Zurück zum Zitat L.-K. Wang and M. J. Schulte. Decimal floating-point division using Newton–Raphson iteration. In Application-Specific Systems, Architectures and Processors, pages 84–95, 2004. L.-K. Wang and M. J. Schulte. Decimal floating-point division using Newton–Raphson iteration. In Application-Specific Systems, Architectures and Processors, pages 84–95, 2004.
[628]
Zurück zum Zitat L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam. Hardware designs for decimal floating-point addition and related operations. IEEE Transactions on Computers, 58(2):322–335, 2009.MathSciNetCrossRef L.-K. Wang, M. J. Schulte, J. D. Thompson, and N. Jairam. Hardware designs for decimal floating-point addition and related operations. IEEE Transactions on Computers, 58(2):322–335, 2009.MathSciNetCrossRef
[630]
Zurück zum Zitat W. H. Ware, editor. Soviet computer technology—1959. Communications of the ACM, 3(3):131–166, 1960. W. H. Ware, editor. Soviet computer technology—1959. Communications of the ACM, 3(3):131–166, 1960.
[632]
Zurück zum Zitat Wikipedia. Slide rule — Wikipedia, The Free Encyclopedia, 2017. [Online; accessed 20-November-2017]. Wikipedia. Slide rule — Wikipedia, The Free Encyclopedia, 2017. [Online; accessed 20-November-2017].
[633]
Zurück zum Zitat Wikipedia. Square root of 2 — Wikipedia, The Free Encyclopedia, 2017. [Online; accessed 20-November-2017]. Wikipedia. Square root of 2 — Wikipedia, The Free Encyclopedia, 2017. [Online; accessed 20-November-2017].
Metadaten
Titel
Introduction
verfasst von
Jean-Michel Muller
Nicolas Brunie
Florent de Dinechin
Claude-Pierre Jeannerod
Mioara Joldes
Vincent Lefèvre
Guillaume Melquiond
Nathalie Revol
Serge Torres
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76526-6_1