Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Jing Liu, Liting Yi

Erschienen in: Liquid Metal Biomaterials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces a new biomedical category of the liquid metal biomaterials which consists of the core theme of the present book. The major advancements as made before will be briefly summarized and future directions worth of pursuing will be outlined. Representative applications enabled by liquid metal biomaterials from both therapeutic and diagnostic aspects will be pointed out. Potential efforts of employing liquid metals to resolve modern biomedical issues will be discussed. Perspective for future development in liquid metal biomaterials area will be given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62:415–440CrossRef Yi L, Liu J (2017) Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int Mater Rev 62:415–440CrossRef
2.
Zurück zum Zitat Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386(10009):2145–2191CrossRef Murray CJ, Barber RM, Foreman KJ, Ozgoren AA, Abd-Allah F, Abera SF et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386(10009):2145–2191CrossRef
3.
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017CrossRef Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017CrossRef
4.
Zurück zum Zitat Kohn J (2004) New approaches to biomaterials design. Nat Mater 3(11):745–747CrossRef Kohn J (2004) New approaches to biomaterials design. Nat Mater 3(11):745–747CrossRef
5.
Zurück zum Zitat Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432CrossRef Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432CrossRef
6.
Zurück zum Zitat Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3(3):e24717CrossRef Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3(3):e24717CrossRef
7.
Zurück zum Zitat Dean MN, Swanson BO, Summers AP (2009) Biomaterials: properties, variation and evolution. Integr Comp Biol 49:15–20CrossRef Dean MN, Swanson BO, Summers AP (2009) Biomaterials: properties, variation and evolution. Integr Comp Biol 49:15–20CrossRef
8.
Zurück zum Zitat Rezaie HR, Bakhtiari L, Öchsner A (2015) Application of biomaterials. Biomaterials and their applications. Springer Rezaie HR, Bakhtiari L, Öchsner A (2015) Application of biomaterials. Biomaterials and their applications. Springer
9.
Zurück zum Zitat Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739CrossRef Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25(19):4731–4739CrossRef
10.
Zurück zum Zitat Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G et al (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826CrossRef Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G et al (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826CrossRef
11.
Zurück zum Zitat Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD et al (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872CrossRef Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD et al (2014) Artificial muscles from fishing line and sewing thread. Science 343(6173):868–872CrossRef
12.
Zurück zum Zitat Tamura K, Mizuno H, Okada K, Katoh H, Hitomi S, Teramatsu T et al (1985) Experimental application of polyvinyl alcohol-silica for small artificial vessels. Biomat Med Dev Artif Organs 13(3–4):133–152CrossRef Tamura K, Mizuno H, Okada K, Katoh H, Hitomi S, Teramatsu T et al (1985) Experimental application of polyvinyl alcohol-silica for small artificial vessels. Biomat Med Dev Artif Organs 13(3–4):133–152CrossRef
13.
Zurück zum Zitat Abbott F (1942) The use of fusible alloy in vapor diffusion pumps. Rev Sci Instrum 13(4):187CrossRef Abbott F (1942) The use of fusible alloy in vapor diffusion pumps. Rev Sci Instrum 13(4):187CrossRef
14.
Zurück zum Zitat Brunetti B, Gozzi D, Iervolino M, Piacente V, Zanicchi G, Parodi N et al (2006) Bismuth activity in lead-free solder Bi-In-Sn alloys. Calphad 30(4):431–442CrossRef Brunetti B, Gozzi D, Iervolino M, Piacente V, Zanicchi G, Parodi N et al (2006) Bismuth activity in lead-free solder Bi-In-Sn alloys. Calphad 30(4):431–442CrossRef
15.
Zurück zum Zitat Moelans N, Kumar KH, Wollants P (2003) Thermodynamic optimization of the lead-free solder system Bi-In-Sn-Zn. J Alloy Compd 360(1):98–106CrossRef Moelans N, Kumar KH, Wollants P (2003) Thermodynamic optimization of the lead-free solder system Bi-In-Sn-Zn. J Alloy Compd 360(1):98–106CrossRef
16.
Zurück zum Zitat Crubzy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman world. Nature 391:29CrossRef Crubzy E, Murail P, Girard L, Bernadou JP (1998) False teeth of the Roman world. Nature 391:29CrossRef
17.
Zurück zum Zitat Bahraminasab M, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip—a review. Trends Biomat Artif Organs 24(2):69–82 Bahraminasab M, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip—a review. Trends Biomat Artif Organs 24(2):69–82
18.
Zurück zum Zitat Poinern GEJ, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240CrossRef Poinern GEJ, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240CrossRef
19.
Zurück zum Zitat Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef
20.
Zurück zum Zitat Valiathan MS, Krishnan VK (1999) Biomaterials: an overview. Natl Med J India 12(6):270–274 Valiathan MS, Krishnan VK (1999) Biomaterials: an overview. Natl Med J India 12(6):270–274
21.
Zurück zum Zitat Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mat 8:887–891CrossRef Zberg B, Uggowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mat 8:887–891CrossRef
22.
Zurück zum Zitat Lim GB (2013) Atherosclerosis: addition of niacin to optimal statin therapy does not affect plaque regression. Nat Rev Cardiol 10(10):554CrossRef Lim GB (2013) Atherosclerosis: addition of niacin to optimal statin therapy does not affect plaque regression. Nat Rev Cardiol 10(10):554CrossRef
23.
Zurück zum Zitat Yin L, Huang X, Xu H, Zhang Y, Lam J, Cheng J, Rogers JA (2014) Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater 26(23):3879–3884CrossRef Yin L, Huang X, Xu H, Zhang Y, Lam J, Cheng J, Rogers JA (2014) Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater 26(23):3879–3884CrossRef
24.
Zurück zum Zitat Zheng YF, Gu XN, Witte F (2014) Biodegradable metals materials. Mat Sci Eng 77(2):1–34 Zheng YF, Gu XN, Witte F (2014) Biodegradable metals materials. Mat Sci Eng 77(2):1–34
25.
Zurück zum Zitat Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlamann J, Doepke A, Halsall HB, Sundaramurthy S et al (2009) Revolutionizing biodegradable metals. Mater Today 12(10):22–32CrossRef Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, Kuhlamann J, Doepke A, Halsall HB, Sundaramurthy S et al (2009) Revolutionizing biodegradable metals. Mater Today 12(10):22–32CrossRef
26.
Zurück zum Zitat Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095CrossRef Wang L, Liu J (2014) Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Sci China Technol Sci 57(11):2089–2095CrossRef
27.
Zurück zum Zitat Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2(5):863–872CrossRef Zhang Q, Liu J (2013) Nano liquid metal as an emerging functional material in energy management, conversion and storage. Nano Energy 2(5):863–872CrossRef
28.
Zurück zum Zitat Liu T, Sen P, Kim CJC (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21(2):443–450CrossRef Liu T, Sen P, Kim CJC (2012) Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J Microelectromech Syst 21(2):443–450CrossRef
29.
Zurück zum Zitat Spells K (1936) The determination of the viscosity of liquid gallium over an extended range of temperature. Proc Phys Soc 48(2):299CrossRef Spells K (1936) The determination of the viscosity of liquid gallium over an extended range of temperature. Proc Phys Soc 48(2):299CrossRef
30.
Zurück zum Zitat Yi L, Jin C, Wang L, Liu J (2014) Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35(37):9789–9801CrossRef Yi L, Jin C, Wang L, Liu J (2014) Liquid-solid phase transition alloy as reversible and rapid molding bone cement. Biomaterials 35(37):9789–9801CrossRef
31.
Zurück zum Zitat Li H, Mei S, Wang L, Gao Y, Liu J (2014) Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int J Heat Fluid Flow 47:1–8CrossRef Li H, Mei S, Wang L, Gao Y, Liu J (2014) Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int J Heat Fluid Flow 47:1–8CrossRef
32.
Zurück zum Zitat Sivan V, Tang SY, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K et al (2013) Liquid metal marbles. Adv Func Mater 23(2):137CrossRef Sivan V, Tang SY, O’Mullane AP, Petersen P, Eshtiaghi N, Kalantar-zadeh K et al (2013) Liquid metal marbles. Adv Func Mater 23(2):137CrossRef
33.
Zurück zum Zitat Li P, Liu J (2011) Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Appl Phys Lett 99(9):094106CrossRef Li P, Liu J (2011) Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Appl Phys Lett 99(9):094106CrossRef
34.
Zurück zum Zitat Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708CrossRef Gao Y, Liu J (2012) Gallium-based thermal interface material with high compliance and wettability. Appl Phys A 107(3):701–708CrossRef
35.
Zurück zum Zitat Liu J, Zhou YX, Lv YG, Li T (2005) Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In: ASME 2005 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Liu J, Zhou YX, Lv YG, Li T (2005) Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. In: ASME 2005 international mechanical engineering congress and exposition. American Society of Mechanical Engineers
36.
Zurück zum Zitat Wang Q, Liu J (2013) Liquid metal based microwave delivery wire, fabrication and application. China Patent No. 201310259413.7, China Wang Q, Liu J (2013) Liquid metal based microwave delivery wire, fabrication and application. China Patent No. 201310259413.7, China
37.
Zurück zum Zitat Kaltenbrunner M, Kettlgruber G, Siket C, Schwödiauer R, Bauer S (2010) Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv Mater 22(18):2065–2067CrossRef Kaltenbrunner M, Kettlgruber G, Siket C, Schwödiauer R, Bauer S (2010) Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv Mater 22(18):2065–2067CrossRef
38.
Zurück zum Zitat Li G, Parmar M, Lee DW (2015) An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. Lab Chip 15(3):766–775CrossRef Li G, Parmar M, Lee DW (2015) An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. Lab Chip 15(3):766–775CrossRef
39.
Zurück zum Zitat Fassler A, Majidi C (2013) 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13(22):4442–4450CrossRef Fassler A, Majidi C (2013) 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13(22):4442–4450CrossRef
40.
Zurück zum Zitat Kramer RK, Majidi C, Wood RJ (2013) Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv Func Mater 23(42):5292–5296CrossRef Kramer RK, Majidi C, Wood RJ (2013) Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv Func Mater 23(42):5292–5296CrossRef
41.
Zurück zum Zitat Yu Y, Wang Q, Yi L, Liu J (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262CrossRef Yu Y, Wang Q, Yi L, Liu J (2014) Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Adv Eng Mater 16(2):255–262CrossRef
42.
Zurück zum Zitat Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T et al (2010) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36(8):981–985CrossRef Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T et al (2010) Viscosity effect on GaInSn studied by XPS. Surf Interface Anal 36(8):981–985CrossRef
43.
Zurück zum Zitat Zhang J, Yao Y, Sheng L, Liu J (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27(16):2648–2655CrossRef Zhang J, Yao Y, Sheng L, Liu J (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27(16):2648–2655CrossRef
44.
Zurück zum Zitat Ilyukhina A, Ilyukhin A, Shkolnikov E (2012) Hydrogen generation from water by means of activated aluminum. Int J Hydrogen Energy 37(21):16382–16387CrossRef Ilyukhina A, Ilyukhin A, Shkolnikov E (2012) Hydrogen generation from water by means of activated aluminum. Int J Hydrogen Energy 37(21):16382–16387CrossRef
45.
Zurück zum Zitat Wang L, Liu J (2015) Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc Royal Soc London 471(2178):20150177CrossRef Wang L, Liu J (2015) Electromagnetic rotation of a liquid metal sphere or pool within a solution. Proc Royal Soc London 471(2178):20150177CrossRef
46.
Zurück zum Zitat Tan SC, Gui H, Yuan B, Liu J (2015) Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett 107(7):071904CrossRef Tan SC, Gui H, Yuan B, Liu J (2015) Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Appl Phys Lett 107(7):071904CrossRef
47.
Zurück zum Zitat Ma KQ, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256CrossRef Ma KQ, Liu J (2007) Nano liquid-metal fluid as ultimate coolant. Phys Lett A 361(3):252–256CrossRef
48.
Zurück zum Zitat Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7(5):2337–2361CrossRef Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7(5):2337–2361CrossRef
49.
Zurück zum Zitat Graf GG (2005) Tin, tin alloys, and tin compounds. Ullmann’s Encyclopedia of Industrial Chemistry Graf GG (2005) Tin, tin alloys, and tin compounds. Ullmann’s Encyclopedia of Industrial Chemistry
50.
Zurück zum Zitat Tanaka A, Hirata M, Kiyohara Y, Nakano M, Omae K, Shiratani M et al (2010) Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films 518(11):2934–2936CrossRef Tanaka A, Hirata M, Kiyohara Y, Nakano M, Omae K, Shiratani M et al (2010) Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films 518(11):2934–2936CrossRef
51.
Zurück zum Zitat Cadwallader LC (2003) Gallium safety in the laboratory. Idaho National Laboratory Cadwallader LC (2003) Gallium safety in the laboratory. Idaho National Laboratory
52.
Zurück zum Zitat Dunne S, Abraham R (2000) Restorative dentistry: dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189(6):310–313 Dunne S, Abraham R (2000) Restorative dentistry: dental post-operative sensitivity associated with a gallium-based restorative material. Br Dent J 189(6):310–313
53.
Zurück zum Zitat Serfontein W, Mekel R (1979) Bismuth toxicity in man ii. review of bismuth blood and urine levels in patients after administration of therapeutic bismuth formulations in relation to the problem of bismuth toxicity in man. Res Commun Chem Pathol Pharmacol 26(2):391–411 Serfontein W, Mekel R (1979) Bismuth toxicity in man ii. review of bismuth blood and urine levels in patients after administration of therapeutic bismuth formulations in relation to the problem of bismuth toxicity in man. Res Commun Chem Pathol Pharmacol 26(2):391–411
54.
Zurück zum Zitat Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D (2011) New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Mater Sci Eng, B 176(20):1653–1659CrossRef Remennik S, Bartsch I, Willbold E, Witte F, Shechtman D (2011) New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Mater Sci Eng, B 176(20):1653–1659CrossRef
55.
Zurück zum Zitat Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef Zhang Q, Zheng Y, Liu J (2012) Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Front Energy 6(4):311–340CrossRef
56.
Zurück zum Zitat Kim HJ, Son C, Ziaie B (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett 92(1):011904CrossRef Kim HJ, Son C, Ziaie B (2008) A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl Phys Lett 92(1):011904CrossRef
57.
Zurück zum Zitat Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94(14):144103CrossRef Cheng S, Rydberg A, Hjort K, Wu Z (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94(14):144103CrossRef
58.
Zurück zum Zitat Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D et al (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22(25):2749–2752CrossRef Kubo M, Li X, Kim C, Hashimoto M, Wiley BJ, Ham D et al (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22(25):2749–2752CrossRef
59.
Zurück zum Zitat Jeong SH, Hjort K, Wu Z (2014) Tape transfer printing of a liquid metal alloy for stretchable RF electronics. Sensors 14(9):16311–16321CrossRef Jeong SH, Hjort K, Wu Z (2014) Tape transfer printing of a liquid metal alloy for stretchable RF electronics. Sensors 14(9):16311–16321CrossRef
60.
Zurück zum Zitat Nawaz AA, Mao X, Stratton ZS, Huang TJ (2013) Unconventional microfluidics: expanding the discipline. Lab Chip 13(8):1457–1463CrossRef Nawaz AA, Mao X, Stratton ZS, Huang TJ (2013) Unconventional microfluidics: expanding the discipline. Lab Chip 13(8):1457–1463CrossRef
61.
Zurück zum Zitat Jung T, Yang S (2015) Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 15(5):11823–11835CrossRef Jung T, Yang S (2015) Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel. Sensors 15(5):11823–11835CrossRef
62.
Zurück zum Zitat Park YL, Majidi C, Kramer R, Bérard P, Wood RJ (2010) Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng 20(12):125029CrossRef Park YL, Majidi C, Kramer R, Bérard P, Wood RJ (2010) Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng 20(12):125029CrossRef
63.
Zurück zum Zitat Wong RDP, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuators, A 179:62–69CrossRef Wong RDP, Posner JD, Santos VJ (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuators, A 179:62–69CrossRef
64.
Zurück zum Zitat Shan W, Lu T, Majidi C (2013) Soft-matter composites with electrically tunable elastic rigidity. Smart Mater Struct 22(8):085005CrossRef Shan W, Lu T, Majidi C (2013) Soft-matter composites with electrically tunable elastic rigidity. Smart Mater Struct 22(8):085005CrossRef
65.
Zurück zum Zitat Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 7(9):e45485CrossRef Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 7(9):e45485CrossRef
66.
Zurück zum Zitat Li H, Yang Y, Liu J (2012) Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 101(7):073511CrossRef Li H, Yang Y, Liu J (2012) Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl Phys Lett 101(7):073511CrossRef
67.
Zurück zum Zitat Mei S, Gao Y, Li H, Deng Z, Liu J (2013) Thermally induced porous structures in printed gallium coating to make transparent conductive film. Appl Phys Lett 102(4):041905CrossRef Mei S, Gao Y, Li H, Deng Z, Liu J (2013) Thermally induced porous structures in printed gallium coating to make transparent conductive film. Appl Phys Lett 102(4):041905CrossRef
68.
Zurück zum Zitat Zhang Q, Gao Y, Liu J (2014) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116(3):1091–1097CrossRef Zhang Q, Gao Y, Liu J (2014) Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl Phys A 116(3):1091–1097CrossRef
69.
Zurück zum Zitat Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium-indium alloy for stretchable electronics. Adv Func Mater 24(23):3501–3507CrossRef Boley JW, White EL, Chiu GTC, Kramer RK (2014) Direct writing of gallium-indium alloy for stretchable electronics. Adv Func Mater 24(23):3501–3507CrossRef
70.
Zurück zum Zitat Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3(11):112117CrossRef Zheng Y, Zhang Q, Liu J (2013) Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv 3(11):112117CrossRef
71.
Zurück zum Zitat Tabatabai A, Fassler A, Usiak C, Majidi C (2013) Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 29(20):6194–6200CrossRef Tabatabai A, Fassler A, Usiak C, Majidi C (2013) Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 29(20):6194–6200CrossRef
72.
Zurück zum Zitat Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1-7 Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1-7
73.
Zurück zum Zitat Wang L, Liu J (2014) Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci China Technol Sci 57(9):1721–1728CrossRef Wang L, Liu J (2014) Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Sci China Technol Sci 57(9):1721–1728CrossRef
Metadaten
Titel
Introduction
verfasst von
Jing Liu
Liting Yi
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.