Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coal is a complicated solid fuel, containing C, H, O, N, S, etc. When the particle is heated, moisture, volatile and tars will be released and involved into multistep chemical reactions. The char after devolatilization also undergoes heterogeneous reaction. Generally, numerous elements, complicated structures and multiple stages of combustion are the main reasons for the complexity of coal combustion. The coal combustion process mainly includes devolatilization, ignition and char oxidation, also accompanying with metal release and partitioning behavior. The combustion efficiency and pollutant formation of coal combustion are interrelated with the above four processes. Therefore, in order to understand the coal combustion process, this thesis focuses on the above four aspects. Traditional experimental methods always change the combustion environment and the sudden change will cause target variation, collecting mirror and other problems. Therefore, in order to illustrate the detailed combustion process of pulverized coal particles and the dynamic behavior of metal precipitation process, this thesis aims to apply in situ optic diagnostic technology into the coal combustion research. Focusing on combustion and fine particulate matter formation, optic methods about molecule, radical, emission intensity, metal atom and surface temperature are mainly investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Annamalai K, Durbetaki P. A theory on transition of ignition phase of coal particles. Combust Flame. 1977;29:193–208.CrossRef Annamalai K, Durbetaki P. A theory on transition of ignition phase of coal particles. Combust Flame. 1977;29:193–208.CrossRef
Zurück zum Zitat Anthony DB. Rapid devolatilization and hydrogasification of pulverized coal [Ph.D.]. Boston: Massachusetts Institute of Technology; 1974. Anthony DB. Rapid devolatilization and hydrogasification of pulverized coal [Ph.D.]. Boston: Massachusetts Institute of Technology; 1974.
Zurück zum Zitat Artos V, Scaroni AW, Stoessner RD. TGA reactivates and burning profiles of coal blends. In: 9th annual international Pittsburgh coal conference; 1992. p. 659–65. Artos V, Scaroni AW, Stoessner RD. TGA reactivates and burning profiles of coal blends. In: 9th annual international Pittsburgh coal conference; 1992. p. 659–65.
Zurück zum Zitat Baxter LL. Char fragmentation and fly ash formation during pulverized-coal combustion. Combust Flame. 1992;90:174–84.CrossRef Baxter LL. Char fragmentation and fly ash formation during pulverized-coal combustion. Combust Flame. 1992;90:174–84.CrossRef
Zurück zum Zitat Bejarano PA, Levendis YA. Single-char-combustion in O2/N2 and O2/CO2 environments. Combust Flame. 2008;153:270–87.CrossRef Bejarano PA, Levendis YA. Single-char-combustion in O2/N2 and O2/CO2 environments. Combust Flame. 2008;153:270–87.CrossRef
Zurück zum Zitat Berkowitz N. The chemistry of coal. New York: Elsevier; 1985. Berkowitz N. The chemistry of coal. New York: Elsevier; 1985.
Zurück zum Zitat Bozkurt M, Fikri M, Schulz C. Investigation of the kinetics of OH* and CH* chemiluminescence in hydrocarbon oxidation behind reflected shock waves. Appl Phys B. 2012;107:515–27.CrossRef Bozkurt M, Fikri M, Schulz C. Investigation of the kinetics of OH* and CH* chemiluminescence in hydrocarbon oxidation behind reflected shock waves. Appl Phys B. 2012;107:515–27.CrossRef
Zurück zum Zitat Bryrs RW. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci. 1996;22:29–120.CrossRef Bryrs RW. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci. 1996;22:29–120.CrossRef
Zurück zum Zitat Bu CS, Liu DY, Chen XP, et al. Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: a combination of visual image and particle temperature. Appl Energy. 2014;115:301–8.CrossRef Bu CS, Liu DY, Chen XP, et al. Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: a combination of visual image and particle temperature. Appl Energy. 2014;115:301–8.CrossRef
Zurück zum Zitat Buhre BJP, Elliott LK, Sheng CD, et al. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31:283–307.CrossRef Buhre BJP, Elliott LK, Sheng CD, et al. Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci. 2005;31:283–307.CrossRef
Zurück zum Zitat Cai HY, Guell AJ, Dugwell DR, et al. Heteroatom distribution in pyrolysis products as a function of heating rate and pressure. Fuel. 1993;72(3):321–7.CrossRef Cai HY, Guell AJ, Dugwell DR, et al. Heteroatom distribution in pyrolysis products as a function of heating rate and pressure. Fuel. 1993;72(3):321–7.CrossRef
Zurück zum Zitat Carpenter AM. Coal blending for power stations. London: IEA/81, IEA Coal Research; 1995. Carpenter AM. Coal blending for power stations. London: IEA/81, IEA Coal Research; 1995.
Zurück zum Zitat Ceng KF, Fang JM, Ni MJ, et al. A theoretical and experimental study on ignition of coal-fired AFBC by intake hot gas-theoretical model. J Combust Sci Technol. 1995;1(1):34–42 (in Chinese). Ceng KF, Fang JM, Ni MJ, et al. A theoretical and experimental study on ignition of coal-fired AFBC by intake hot gas-theoretical model. J Combust Sci Technol. 1995;1(1):34–42 (in Chinese).
Zurück zum Zitat Chamber AK, Zacharkiw R. Effect of blending on the combustion properties of dissimilar Alberta coals. Edmonton: Alberta Office of Coal Research and Technology; 1988. Chamber AK, Zacharkiw R. Effect of blending on the combustion properties of dissimilar Alberta coals. Edmonton: Alberta Office of Coal Research and Technology; 1988.
Zurück zum Zitat Chamberlain SC. Measurement and analysis of gas composition in a staged and unstaged oxy-fired pulverized coal reactor with warm flue gas recycle [MS]. Provo: Brigham Yong University; 2012. Chamberlain SC. Measurement and analysis of gas composition in a staged and unstaged oxy-fired pulverized coal reactor with warm flue gas recycle [MS]. Provo: Brigham Yong University; 2012.
Zurück zum Zitat Chen L, Ghoniem AF, Ghoniem AF. Oxy-fule combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci. 2012;38:156–214.CrossRef Chen L, Ghoniem AF, Ghoniem AF. Oxy-fule combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Prog Energy Combust Sci. 2012;38:156–214.CrossRef
Zurück zum Zitat China Energy Research Society. China energy outlook (2013). Beijing: China Electric Power Press; 2013 (in Chinese). China Energy Research Society. China energy outlook (2013). Beijing: China Electric Power Press; 2013 (in Chinese).
Zurück zum Zitat Chui EH, Douglas MA, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel. 2003;82:1201–10.CrossRef Chui EH, Douglas MA, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal. Fuel. 2003;82:1201–10.CrossRef
Zurück zum Zitat Chun BS, Wilkinson GT. Interfacial intension in high-pressure carbon-dioxide mixtures. Ind Eng Chem Res. 1995;34:437–4378.CrossRef Chun BS, Wilkinson GT. Interfacial intension in high-pressure carbon-dioxide mixtures. Ind Eng Chem Res. 1995;34:437–4378.CrossRef
Zurück zum Zitat Cumming JW. A DTG combustion study on anthracitic and other coal chars. Thermochim Acta. 1987;155:151–61.CrossRef Cumming JW. A DTG combustion study on anthracitic and other coal chars. Thermochim Acta. 1987;155:151–61.CrossRef
Zurück zum Zitat Daily JW. Laser induced fluorescence spectroscopy in flames. Prog Energy Combust Sci. 1997;23:133–99.CrossRef Daily JW. Laser induced fluorescence spectroscopy in flames. Prog Energy Combust Sci. 1997;23:133–99.CrossRef
Zurück zum Zitat De Soete GG. Ignition and oxidation of pulverized solid fuel. Revue de I’Institut Francais du Petrole. 1985;40(5):649–70. De Soete GG. Ignition and oxidation of pulverized solid fuel. Revue de I’Institut Francais du Petrole. 1985;40(5):649–70.
Zurück zum Zitat Driscoll JJ, Sick V, Schrader PE, et al. Measurements of NO distributions and fluorescence lifetimes in a nonpremixed counterflow CH4/Air flame using picosecond time-resolved laser-induced fluorescence. Proc Combust Inst. 2002;29:2719–26.CrossRef Driscoll JJ, Sick V, Schrader PE, et al. Measurements of NO distributions and fluorescence lifetimes in a nonpremixed counterflow CH4/Air flame using picosecond time-resolved laser-induced fluorescence. Proc Combust Inst. 2002;29:2719–26.CrossRef
Zurück zum Zitat Du XY. Ignition and combustion of dense stream of coal particles [Ph.D.]. Texas: A&M University; 1995. Du XY. Ignition and combustion of dense stream of coal particles [Ph.D.]. Texas: A&M University; 1995.
Zurück zum Zitat Du XY, Annamalai K. The transient ignition of isolated coal particle. Combust Flame. 1994;97:339–54.CrossRef Du XY, Annamalai K. The transient ignition of isolated coal particle. Combust Flame. 1994;97:339–54.CrossRef
Zurück zum Zitat Eckbreth AC. Laser diagnostics for combustion temperature and species. Amsterdam: Gordon and Breach Publishers; 1996.CrossRef Eckbreth AC. Laser diagnostics for combustion temperature and species. Amsterdam: Gordon and Breach Publishers; 1996.CrossRef
Zurück zum Zitat Eddings EG, Light JS. Evolution of metal contaminants from incinerated solid. In: Proceedings of the ASME joint power generation conference. Atlanta, Georgia; 1992. Eddings EG, Light JS. Evolution of metal contaminants from incinerated solid. In: Proceedings of the ASME joint power generation conference. Atlanta, Georgia; 1992.
Zurück zum Zitat Essenhigh RH, Misra MK, Shaw DW. Ignition of coal particles: a review. Combust Flame. 1989;77:3–30.CrossRef Essenhigh RH, Misra MK, Shaw DW. Ignition of coal particles: a review. Combust Flame. 1989;77:3–30.CrossRef
Zurück zum Zitat Farrow RL, Lucht RP, Clark GL, et al. Species concentration measurements using CARS with nonresonant susceptibility normalization. Appl Opt. 1985;24:2241–51.CrossRef Farrow RL, Lucht RP, Clark GL, et al. Species concentration measurements using CARS with nonresonant susceptibility normalization. Appl Opt. 1985;24:2241–51.CrossRef
Zurück zum Zitat Field MA. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K. Combust Flame. 1969;13:237–52.CrossRef Field MA. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 K and 2000 K. Combust Flame. 1969;13:237–52.CrossRef
Zurück zum Zitat Fletcher TH. Time-resolved temperature measurements of individual coal particles during devolatilization. Combust Sci Technol. 1989;63:89–105.CrossRef Fletcher TH. Time-resolved temperature measurements of individual coal particles during devolatilization. Combust Sci Technol. 1989;63:89–105.CrossRef
Zurück zum Zitat Fletcher TH, Kerstein AR, Pugmire RJ, et al. Chemical percolation model for devolatilization. 3. Direct use of C-13 Nmr data to predict effects of coal type. Energy Fuels. 1992;6(4):414–31.CrossRef Fletcher TH, Kerstein AR, Pugmire RJ, et al. Chemical percolation model for devolatilization. 3. Direct use of C-13 Nmr data to predict effects of coal type. Energy Fuels. 1992;6(4):414–31.CrossRef
Zurück zum Zitat Gavalas GR. Coal pyrolysis. New York: Elsevier; 1982. Gavalas GR. Coal pyrolysis. New York: Elsevier; 1982.
Zurück zum Zitat Gibbins JR, King RAV, Woods RJ, et al. Variable-heating-rate wire-mesh pyrolysis apparatus. Rev Sci Instrum. 1989;60:1129–39.CrossRef Gibbins JR, King RAV, Woods RJ, et al. Variable-heating-rate wire-mesh pyrolysis apparatus. Rev Sci Instrum. 1989;60:1129–39.CrossRef
Zurück zum Zitat Griffin TP, Howard JB, Peters WA. Pressure and temperature effects in bituminous coal pyrolysis—experimental-observations and a transient lumped-parameter model. Fuel. 1994;73(4):591–601.CrossRef Griffin TP, Howard JB, Peters WA. Pressure and temperature effects in bituminous coal pyrolysis—experimental-observations and a transient lumped-parameter model. Fuel. 1994;73(4):591–601.CrossRef
Zurück zum Zitat Guell AJ, Kandiyoti R. Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor. Energy Fuels. 1993;7:943–52.CrossRef Guell AJ, Kandiyoti R. Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor. Energy Fuels. 1993;7:943–52.CrossRef
Zurück zum Zitat Habib ZG, Verisch P. Visible and infrared temperature measurements in pulverized coal flames. Combust Sci Technol. 1987;54:349–65.CrossRef Habib ZG, Verisch P. Visible and infrared temperature measurements in pulverized coal flames. Combust Sci Technol. 1987;54:349–65.CrossRef
Zurück zum Zitat Hamor RJ, Smith IW, Tyler RJ. Kinetics of combustion of a pulverized brown coal char between 630 and 2200 degrees K. Combust Flame. 1973;21(2):153–62.CrossRef Hamor RJ, Smith IW, Tyler RJ. Kinetics of combustion of a pulverized brown coal char between 630 and 2200 degrees K. Combust Flame. 1973;21(2):153–62.CrossRef
Zurück zum Zitat Hayrinen V, Hernberg R, Aho M. Demonstration of plasma excited atomic resonance line spectroscopy for on-line measurement of alkali metals in a 20 kW bubbling fluidized bed. Fuel. 2004;83:791–7.CrossRef Hayrinen V, Hernberg R, Aho M. Demonstration of plasma excited atomic resonance line spectroscopy for on-line measurement of alkali metals in a 20 kW bubbling fluidized bed. Fuel. 2004;83:791–7.CrossRef
Zurück zum Zitat He Y, Zhu JJ, Wang ZH, et al. In-situ measurement of sodium and potassium release during oxy-fuel combustion of lignite using laser-induced breakdown spectroscopy: effect of O2 and CO2 concentration. Energy Fuels. 2013;27:1123–30.CrossRef He Y, Zhu JJ, Wang ZH, et al. In-situ measurement of sodium and potassium release during oxy-fuel combustion of lignite using laser-induced breakdown spectroscopy: effect of O2 and CO2 concentration. Energy Fuels. 2013;27:1123–30.CrossRef
Zurück zum Zitat Hernberg R, Stenberg J. Simultaneous in situ measurement of temperature and size of burning char particles in a fluidized bed furnace by means of fiberoptic pyrometry. Combust Flame. 1993;95:191–205.CrossRef Hernberg R, Stenberg J. Simultaneous in situ measurement of temperature and size of burning char particles in a fluidized bed furnace by means of fiberoptic pyrometry. Combust Flame. 1993;95:191–205.CrossRef
Zurück zum Zitat Hong JH. Modeling char oxidation as a function of pressure using an intrinsic Langmuir rate equation [Ph.D.]. Provo: Brigham Yong University; 2000. Hong JH. Modeling char oxidation as a function of pressure using an intrinsic Langmuir rate equation [Ph.D.]. Provo: Brigham Yong University; 2000.
Zurück zum Zitat Howard JB. Fundamentals of coal pyrolysis and hydropyrolysis. New York: Willey; 1981. Howard JB. Fundamentals of coal pyrolysis and hydropyrolysis. New York: Willey; 1981.
Zurück zum Zitat Howard JB, Essenhigh RH. The mechanism of ignition of pulverized coal. Combust Flame. 1965;9:337–9.CrossRef Howard JB, Essenhigh RH. The mechanism of ignition of pulverized coal. Combust Flame. 1965;9:337–9.CrossRef
Zurück zum Zitat Howard JB, Essenhigh RH. Mechanism of solid-partical combustion with simultaneous gas-phase volatiles combustion. Proc Combust Inst. 1967a;11(1):74–84.CrossRef Howard JB, Essenhigh RH. Mechanism of solid-partical combustion with simultaneous gas-phase volatiles combustion. Proc Combust Inst. 1967a;11(1):74–84.CrossRef
Zurück zum Zitat Howard JB, Essenhigh R. Pyrolysis of coal particles in pulverized fuel flames. I & EC Process Des Dev. 1967b;6:74–84.CrossRef Howard JB, Essenhigh R. Pyrolysis of coal particles in pulverized fuel flames. I & EC Process Des Dev. 1967b;6:74–84.CrossRef
Zurück zum Zitat Hsu LJ, Alwahabi ZT, Nathan GJ, et al. Sodium and potassium released from burning particles of brown coal and pine wood in a lamiar premixed methane flame using quantitative laser-induced breakdown spectroscopy. Appl Spectrosc. 2011;65:684–91.CrossRef Hsu LJ, Alwahabi ZT, Nathan GJ, et al. Sodium and potassium released from burning particles of brown coal and pine wood in a lamiar premixed methane flame using quantitative laser-induced breakdown spectroscopy. Appl Spectrosc. 2011;65:684–91.CrossRef
Zurück zum Zitat Hurt RH, Sun JK, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame. 1998;113:181–97.CrossRef Hurt RH, Sun JK, Lunden M. A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame. 1998;113:181–97.CrossRef
Zurück zum Zitat Jackson M. Development of a propellant simulating gas fuel burner and its applicability in the validation of an aluminum particle combustion model [Ph.D.]. Texas: Texas Tech University; 2005. Jackson M. Development of a propellant simulating gas fuel burner and its applicability in the validation of an aluminum particle combustion model [Ph.D.]. Texas: Texas Tech University; 2005.
Zurück zum Zitat Jackson M. A quantitative analysis of the flame produced by a gas-fueled propellant simulating burner including: soot field characterization, temperature diagnostic techniques, spectral analysis, heat flux, and aluminum particle combustion [Ph.D.]. Texas: Texas Tech University; 2007. Jackson M. A quantitative analysis of the flame produced by a gas-fueled propellant simulating burner including: soot field characterization, temperature diagnostic techniques, spectral analysis, heat flux, and aluminum particle combustion [Ph.D.]. Texas: Texas Tech University; 2007.
Zurück zum Zitat Jamaluddin AS, Truelove JS, Wall TF. Devolatilization of bituminous coals at medium to high heating rates. Combust Flame. 1986;63(3):329–37.CrossRef Jamaluddin AS, Truelove JS, Wall TF. Devolatilization of bituminous coals at medium to high heating rates. Combust Flame. 1986;63(3):329–37.CrossRef
Zurück zum Zitat Joutsenoja TS, Hernberg R. Pyrometric measurement of the temperature and size of individual combusting fuel particles. Appl Opt. 1997;36(7):1525–35.CrossRef Joutsenoja TS, Hernberg R. Pyrometric measurement of the temperature and size of individual combusting fuel particles. Appl Opt. 1997;36(7):1525–35.CrossRef
Zurück zum Zitat Jump SI, Miziolek AW, Vincenzo P. Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge, UK: Cambridge University Press; 2006. Jump SI, Miziolek AW, Vincenzo P. Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications. Cambridge, UK: Cambridge University Press; 2006.
Zurück zum Zitat Juntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal. Fuel. 1984;63(6):731–7.CrossRef Juntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal. Fuel. 1984;63(6):731–7.CrossRef
Zurück zum Zitat Juntgen H, Van Heek KH. An update of german non-isothermal coal pyrolysis work. Fuel Process Technol. 1979;2(4):261–93.CrossRef Juntgen H, Van Heek KH. An update of german non-isothermal coal pyrolysis work. Fuel Process Technol. 1979;2(4):261–93.CrossRef
Zurück zum Zitat Karcz H, Kordylewski W, Rybak W, et al. Evaluation of kinetic parameters of coal ignition. Fuel. 1980;59:799–802.CrossRef Karcz H, Kordylewski W, Rybak W, et al. Evaluation of kinetic parameters of coal ignition. Fuel. 1980;59:799–802.CrossRef
Zurück zum Zitat Katalambual H, Hayashi J, Chiba T. Dependence of single coal particle ignition mechanism on the surrounding volatile matter cloud. Energy Fuels. 1997;11:1033–9.CrossRef Katalambual H, Hayashi J, Chiba T. Dependence of single coal particle ignition mechanism on the surrounding volatile matter cloud. Energy Fuels. 1997;11:1033–9.CrossRef
Zurück zum Zitat Khatami R, Levendis YA. On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combust Flame. 2011;158:1822–36.CrossRef Khatami R, Levendis YA. On the deduction of single coal particle combustion temperature from three-color optical pyrometry. Combust Flame. 2011;158:1822–36.CrossRef
Zurück zum Zitat Khatami R, Stivers C, Joshi K, et al. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combust Flame. 2012a;159:1253–71.CrossRef Khatami R, Stivers C, Joshi K, et al. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combust Flame. 2012a;159:1253–71.CrossRef
Zurück zum Zitat Khatami R, Stivers C, Levendis YA, et al. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres. Combust Flame. 2012b;159:3554–68.CrossRef Khatami R, Stivers C, Levendis YA, et al. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres. Combust Flame. 2012b;159:3554–68.CrossRef
Zurück zum Zitat Kimber GM, Gray MD. Rapid devolatilization of small coal particles. Combust Flame. 1967;11(4):360–2.CrossRef Kimber GM, Gray MD. Rapid devolatilization of small coal particles. Combust Flame. 1967;11(4):360–2.CrossRef
Zurück zum Zitat Kuhn PB, Ma B, Connelly BC, et al. Soot and thin-filament pyrometry using a color digital camera. Proc Combust Inst. 2011;33:743–50.CrossRef Kuhn PB, Ma B, Connelly BC, et al. Soot and thin-filament pyrometry using a color digital camera. Proc Combust Inst. 2011;33:743–50.CrossRef
Zurück zum Zitat Levendis YA, Joshi K, Khatami R, et al. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combust Flame. 2011a;158:452–65.CrossRef Levendis YA, Joshi K, Khatami R, et al. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combust Flame. 2011a;158:452–65.CrossRef
Zurück zum Zitat Levendis YA, Joshi K, Khatami R. A theory on transition of ignition phase of coal particles. Combust Flame. 2011b;158:452–65.CrossRef Levendis YA, Joshi K, Khatami R. A theory on transition of ignition phase of coal particles. Combust Flame. 2011b;158:452–65.CrossRef
Zurück zum Zitat Li CZ. Advances in the science of Victorian brown coal. Netherlands: Elsevier; 2004. Li CZ. Advances in the science of Victorian brown coal. Netherlands: Elsevier; 2004.
Zurück zum Zitat Li GD. Investigations on fine particulates formation, transformation and deposition properties during pulverized coal combustion [Ph.D.]. Beijing: Tsinghua University; 2014 (in Chinese). Li GD. Investigations on fine particulates formation, transformation and deposition properties during pulverized coal combustion [Ph.D.]. Beijing: Tsinghua University; 2014 (in Chinese).
Zurück zum Zitat Li SQ, Marshall JS, Liu GQ, et al. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Prog Energy Combust Sci. 2011;37:633–68.CrossRef Li SQ, Marshall JS, Liu GQ, et al. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Prog Energy Combust Sci. 2011;37:633–68.CrossRef
Zurück zum Zitat Li GD, Li SQ, Xu XG. Dynamic behavior of biomass ash deposition in a 25 kW one-dimensional down-fired combustor. Energy Fuels. 2014;28:219–27.CrossRef Li GD, Li SQ, Xu XG. Dynamic behavior of biomass ash deposition in a 25 kW one-dimensional down-fired combustor. Energy Fuels. 2014;28:219–27.CrossRef
Zurück zum Zitat Liao H. Effect of heating conditions on SO2 adsorption capacity of char by a newly developed wire-mesh reactor [M.S.]. Beijing: Tsinghua University; 2007 (in Chinese). Liao H. Effect of heating conditions on SO2 adsorption capacity of char by a newly developed wire-mesh reactor [M.S.]. Beijing: Tsinghua University; 2007 (in Chinese).
Zurück zum Zitat Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manage Assoc. 2000;50(9):1565–618.CrossRef Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manage Assoc. 2000;50(9):1565–618.CrossRef
Zurück zum Zitat Lim JY, Chatzakis IN, Megaritis A, et al. Gasification and char combustion reactivities of Daw Mill coal in wire-mesh and ‘hot-rod’ reactors. Fuel. 1997;76:1327–35.CrossRef Lim JY, Chatzakis IN, Megaritis A, et al. Gasification and char combustion reactivities of Daw Mill coal in wire-mesh and ‘hot-rod’ reactors. Fuel. 1997;76:1327–35.CrossRef
Zurück zum Zitat Lu H, Ip LT, Mackrory A, et al. Particle surface temperature measurements with multicolor band pyrometry. AIChE J. 2009;55:243–55.CrossRef Lu H, Ip LT, Mackrory A, et al. Particle surface temperature measurements with multicolor band pyrometry. AIChE J. 2009;55:243–55.CrossRef
Zurück zum Zitat Ma JL. Soot formation during coal pyrolysis [Ph.D.]. Provo: Brigham Young University; 1996. Ma JL. Soot formation during coal pyrolysis [Ph.D.]. Provo: Brigham Young University; 1996.
Zurück zum Zitat Ma B, Wang GH, Magnotti G, et al. Intensity-ratio and color-ratio thin-filament pyrometry: uncertainties and accuracy. Combust Flame. 2014;161:908–16.CrossRef Ma B, Wang GH, Magnotti G, et al. Intensity-ratio and color-ratio thin-filament pyrometry: uncertainties and accuracy. Combust Flame. 2014;161:908–16.CrossRef
Zurück zum Zitat Makino A, Law CK. Quasi-steady and transient combustion of a carbon particle: theory and experimental comparisons. In: Twenty-first symposium (international) on combustion; 1988. p. 183–91.CrossRef Makino A, Law CK. Quasi-steady and transient combustion of a carbon particle: theory and experimental comparisons. In: Twenty-first symposium (international) on combustion; 1988. p. 183–91.CrossRef
Zurück zum Zitat Marran DF, Frank JH, Long MB, et al. Intracavity technique for improved Raman/Rayleigh imaging in flames. Opt Lett. 1995;20:791–2.CrossRef Marran DF, Frank JH, Long MB, et al. Intracavity technique for improved Raman/Rayleigh imaging in flames. Opt Lett. 1995;20:791–2.CrossRef
Zurück zum Zitat Maun JD, Sunderland PB, Urban DL. Thin-filament pyrometry with a digital still camera. Appl Opt. 2007;46(4):483–8.CrossRef Maun JD, Sunderland PB, Urban DL. Thin-filament pyrometry with a digital still camera. Appl Opt. 2007;46(4):483–8.CrossRef
Zurück zum Zitat Mckenzie A, Smith IW, Adonauszpindler G. Fourth symposium on flames and industry—predictive methods for industrial flames—calculation of burnout of polydisperse suspensions of low-reactivity and high-reactivity pulverized fuels. J Inst Fuel. 1974;47(391):75–81. Mckenzie A, Smith IW, Adonauszpindler G. Fourth symposium on flames and industry—predictive methods for industrial flames—calculation of burnout of polydisperse suspensions of low-reactivity and high-reactivity pulverized fuels. J Inst Fuel. 1974;47(391):75–81.
Zurück zum Zitat McLean WJ. Ignition of pulverized fuels: a comparative study. Western States Section of the Combustion Institute; 1982. p. 82–123. McLean WJ. Ignition of pulverized fuels: a comparative study. Western States Section of the Combustion Institute; 1982. p. 82–123.
Zurück zum Zitat Messenbock RC, Dugwell DR, Kandiyoti R. Coal gasification in CO2 and steam: development of a steam injection facility for high-pressure wire-mesh reactors. Energy Fuels. 1999;13:122–9.CrossRef Messenbock RC, Dugwell DR, Kandiyoti R. Coal gasification in CO2 and steam: development of a steam injection facility for high-pressure wire-mesh reactors. Energy Fuels. 1999;13:122–9.CrossRef
Zurück zum Zitat Mitchell RE, Niksa S. Temperature measurements of single pulverized fuel particles by two-color pyrometry: II. Particle burning behavior. In: Extended abstracts, Spring meeting, San Francisco; 1983. Mitchell RE, Niksa S. Temperature measurements of single pulverized fuel particles by two-color pyrometry: II. Particle burning behavior. In: Extended abstracts, Spring meeting, San Francisco; 1983.
Zurück zum Zitat Mitchell RE, Ma LQ, Kim B. On the burning behavior of pulverized coal chars. Combust Flame. 2007;151:426–36.CrossRef Mitchell RE, Ma LQ, Kim B. On the burning behavior of pulverized coal chars. Combust Flame. 2007;151:426–36.CrossRef
Zurück zum Zitat Molina A, Shaddix CR. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst. 2007;31:1905–12.CrossRef Molina A, Shaddix CR. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proc Combust Inst. 2007;31:1905–12.CrossRef
Zurück zum Zitat Monkhouse P. On-line spectroscopic and spectrometric methods for the determination of metal species in industrial process. Prog Energy Combust Sci. 2011;37:125–71.CrossRef Monkhouse P. On-line spectroscopic and spectrometric methods for the determination of metal species in industrial process. Prog Energy Combust Sci. 2011;37:125–71.CrossRef
Zurück zum Zitat Murphy JJ, Shaddix CR. Influence of scattering and probe-volume heterogeneity on soot measurements using optical pyrometry. Combust Flame. 2005;143(1–2):1–10.CrossRef Murphy JJ, Shaddix CR. Influence of scattering and probe-volume heterogeneity on soot measurements using optical pyrometry. Combust Flame. 2005;143(1–2):1–10.CrossRef
Zurück zum Zitat Nau P, Kruger J, Lackner A. On the quantification of OH*, CH* and C2* chemiluminescence in flames. Appl Phys B. 2012;107:551–9.CrossRef Nau P, Kruger J, Lackner A. On the quantification of OH*, CH* and C2* chemiluminescence in flames. Appl Phys B. 2012;107:551–9.CrossRef
Zurück zum Zitat Neville M, Sarofim AF. The fate of sodium during pulverized coal combustion. Fuel. 1985;64:384–90.CrossRef Neville M, Sarofim AF. The fate of sodium during pulverized coal combustion. Fuel. 1985;64:384–90.CrossRef
Zurück zum Zitat Nguyen Q, Dibble RW, Carter CD, et al. Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame. Combust Flame. 1996;105(4):499–510.CrossRef Nguyen Q, Dibble RW, Carter CD, et al. Raman-LIF measurements of temperature, major species, OH, and NO in a methane-air Bunsen flame. Combust Flame. 1996;105(4):499–510.CrossRef
Zurück zum Zitat Nie QH, Sun SZ, Li ZQ, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends. J Combust Sci Technol. 2001;7(1):72–6. Nie QH, Sun SZ, Li ZQ, et al. Thermogravimetric analysis on the combustion characteristics of brown coal blends. J Combust Sci Technol. 2001;7(1):72–6.
Zurück zum Zitat Niksa S, Kerstein AR. The distributed-energy chain model for rapid coal devolatilization kinetics: 1. Formulation. Combust Flame. 1986;66(2):95–109.CrossRef Niksa S, Kerstein AR. The distributed-energy chain model for rapid coal devolatilization kinetics: 1. Formulation. Combust Flame. 1986;66(2):95–109.CrossRef
Zurück zum Zitat Nozaki T, Adschiri T, Fujimoto K. Coal char gasification under pressurized CO2 atmosphere. Fuel. 1992;71(3):349–50.CrossRef Nozaki T, Adschiri T, Fujimoto K. Coal char gasification under pressurized CO2 atmosphere. Fuel. 1992;71(3):349–50.CrossRef
Zurück zum Zitat Pan WP, Gan YD. A study of thermal analytical values for coal blends burned in an air atmosphere. Thermochim Acta. 1991;180(1):203–17.CrossRef Pan WP, Gan YD. A study of thermal analytical values for coal blends burned in an air atmosphere. Thermochim Acta. 1991;180(1):203–17.CrossRef
Zurück zum Zitat Panagiotou T, Levendis YA, Delichatsios M. Measurements of particles flame temperatures using three-colour optical pyrometry. Combust Flame. 1996;104:272–87.CrossRef Panagiotou T, Levendis YA, Delichatsios M. Measurements of particles flame temperatures using three-colour optical pyrometry. Combust Flame. 1996;104:272–87.CrossRef
Zurück zum Zitat Payne R, Chen SL, Wolsky AM, et al. CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas. Combust Sci Technol. 1989;67:1–16.CrossRef Payne R, Chen SL, Wolsky AM, et al. CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas. Combust Sci Technol. 1989;67:1–16.CrossRef
Zurück zum Zitat Peralta D, Paterson N, Dugwell D, et al. Pyrolysis and CO2 gasification of Chinese coals in a high-pressure wire-mesh reactor under conditions relevant to entrained-flow gasification. Energy Fuels. 2005;19:532–7.CrossRef Peralta D, Paterson N, Dugwell D, et al. Pyrolysis and CO2 gasification of Chinese coals in a high-pressure wire-mesh reactor under conditions relevant to entrained-flow gasification. Energy Fuels. 2005;19:532–7.CrossRef
Zurück zum Zitat Pipatmanomai S, Paterson N, Dugwell DR, et al. Investigation of coal conversion under conditions simulating the raceway of a blast furnace using a pulsed air injection, wire-mesh reactor. Energy Fuels. 2003;17:489–97.CrossRef Pipatmanomai S, Paterson N, Dugwell DR, et al. Investigation of coal conversion under conditions simulating the raceway of a blast furnace using a pulsed air injection, wire-mesh reactor. Energy Fuels. 2003;17:489–97.CrossRef
Zurück zum Zitat Pitts WM. Thin-filament pyrometry in flickering laminar diffusion flames. Proc Combust Inst. 1996;26:1171–9.CrossRef Pitts WM. Thin-filament pyrometry in flickering laminar diffusion flames. Proc Combust Inst. 1996;26:1171–9.CrossRef
Zurück zum Zitat Poole DJ, Sharifi VN, Swithenban J, et al. Identification of metal concentration fluctuations in waste-to-energy plant flue gas—a novel application for ICP-OES. J Anal At Spectrom. 2005;20(9):932–8.CrossRef Poole DJ, Sharifi VN, Swithenban J, et al. Identification of metal concentration fluctuations in waste-to-energy plant flue gas—a novel application for ICP-OES. J Anal At Spectrom. 2005;20(9):932–8.CrossRef
Zurück zum Zitat Postler R, Epple B, Kluger F, et al. Dynamic process simulation model of an oxyfuel 250 MWel demonstration power plant. In: 2nd oxyfuel combustion conference; 2011. Postler R, Epple B, Kluger F, et al. Dynamic process simulation model of an oxyfuel 250 MWel demonstration power plant. In: 2nd oxyfuel combustion conference; 2011.
Zurück zum Zitat Qiao Y, Zhang L, Binner E, et al. An investigation of the cases of the difference in coal ignition temperature between combustion in air and O2/CO2. Fuel. 2010;89:3381–8.CrossRef Qiao Y, Zhang L, Binner E, et al. An investigation of the cases of the difference in coal ignition temperature between combustion in air and O2/CO2. Fuel. 2010;89:3381–8.CrossRef
Zurück zum Zitat Qiu JR, Guo J, Zeng HC. Research on pyrolysis kinetics and mechanisms of blended pulverized coal. In: 7th international conference on coal science; 1993a. p. 179–82. Qiu JR, Guo J, Zeng HC. Research on pyrolysis kinetics and mechanisms of blended pulverized coal. In: 7th international conference on coal science; 1993a. p. 179–82.
Zurück zum Zitat Qiu JR, Ma YY, Zeng HC, et al. Test measurement and modelling prediction on ignition characteristics temperature of mixed coal. Power Syst Eng. 1993b;9(5):51–4 (in Chinese). Qiu JR, Ma YY, Zeng HC, et al. Test measurement and modelling prediction on ignition characteristics temperature of mixed coal. Power Syst Eng. 1993b;9(5):51–4 (in Chinese).
Zurück zum Zitat Quyn DM, Wu HW, Bhattacharya SP, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel. 2002a;81:151–8.CrossRef Quyn DM, Wu HW, Bhattacharya SP, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel. 2002a;81:151–8.CrossRef
Zurück zum Zitat Quyn DM, Wu HW, Li CZ. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel. 2002b;82:143–9.CrossRef Quyn DM, Wu HW, Li CZ. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel. 2002b;82:143–9.CrossRef
Zurück zum Zitat Radziemski LJ, Cremers DA, et al. Handbook of laser-induced breakdown spectroscopy. New York: Wiley; 2006. Radziemski LJ, Cremers DA, et al. Handbook of laser-induced breakdown spectroscopy. New York: Wiley; 2006.
Zurück zum Zitat Ren YH, Li SQ, Zhang YY, et al. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system. Phys Rev Lett. 2015;114:093401.CrossRef Ren YH, Li SQ, Zhang YY, et al. Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system. Phys Rev Lett. 2015;114:093401.CrossRef
Zurück zum Zitat Ruiz M, Annamalai K, Dahdah T. An experimental study on group ignition of coal particle streams. Heat Mass Transf Fires Combust Syst. 1990;148:19–26. Ruiz M, Annamalai K, Dahdah T. An experimental study on group ignition of coal particle streams. Heat Mass Transf Fires Combust Syst. 1990;148:19–26.
Zurück zum Zitat Salinero J, Gomez-Berea A, Tripinana M, et al. Measurement of char surface temperature in a fluidized bed combustor using pyrometry with digital camera. Chem Eng J. 2016;288:441–50.CrossRef Salinero J, Gomez-Berea A, Tripinana M, et al. Measurement of char surface temperature in a fluidized bed combustor using pyrometry with digital camera. Chem Eng J. 2016;288:441–50.CrossRef
Zurück zum Zitat Sathe C, Hayashi J, Li CZ, et al. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures. Fuel. 2003;82:1491–7.CrossRef Sathe C, Hayashi J, Li CZ, et al. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressures. Fuel. 2003;82:1491–7.CrossRef
Zurück zum Zitat Satterfield CN. Mass Transfer in Heterogeneous Catalysis. Cambridge: MIT Press; 1970. Satterfield CN. Mass Transfer in Heterogeneous Catalysis. Cambridge: MIT Press; 1970.
Zurück zum Zitat Saxena SC. Devolatilization and combustion characteristics of coal particles. Prog Energy Combust Sci. 1990;16(1):55–94.CrossRef Saxena SC. Devolatilization and combustion characteristics of coal particles. Prog Energy Combust Sci. 1990;16(1):55–94.CrossRef
Zurück zum Zitat Schlosser E, Fernholz T, Teichert H, et al. In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim Acta, Part A. 2002;58:2347–59.CrossRef Schlosser E, Fernholz T, Teichert H, et al. In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim Acta, Part A. 2002;58:2347–59.CrossRef
Zurück zum Zitat Schurmann H, Monkhouse PB, Unterberger S, et al. In situ parametric study of alkali release in pulverized coal combustion: effects of operating conditions and gas composition. Proc Combust Inst. 2007;31:1913–20.CrossRef Schurmann H, Monkhouse PB, Unterberger S, et al. In situ parametric study of alkali release in pulverized coal combustion: effects of operating conditions and gas composition. Proc Combust Inst. 2007;31:1913–20.CrossRef
Zurück zum Zitat Seixas JPS, Essenhigh RH. Ignition temperatures of a high-ash Portuguese anthracite—comparison with a low-ash Pennsylvania anthracite. Combust Flame. 1986;66(2):215–8.CrossRef Seixas JPS, Essenhigh RH. Ignition temperatures of a high-ash Portuguese anthracite—comparison with a low-ash Pennsylvania anthracite. Combust Flame. 1986;66(2):215–8.CrossRef
Zurück zum Zitat Sergeant GD, Smith IW. Combustion rate of bituminous coal char in temperature-range 800 to 1700 K. Fuel. 1973;52(1):52–7.CrossRef Sergeant GD, Smith IW. Combustion rate of bituminous coal char in temperature-range 800 to 1700 K. Fuel. 1973;52(1):52–7.CrossRef
Zurück zum Zitat Sha XZ, Chen YG, Cao J, et al. Effects of operating pressure on coal gasification. Fuel. 1990;69(5):656–9.CrossRef Sha XZ, Chen YG, Cao J, et al. Effects of operating pressure on coal gasification. Fuel. 1990;69(5):656–9.CrossRef
Zurück zum Zitat Shaddix CR, Molina A. Effect of O2 and high CO2 concentration on PC char burning rates during oxy-fuel combustion. In: The 33rd international technical conference on coal utilization and fuel systems. Clearwater, FL, USA; 2008. Shaddix CR, Molina A. Effect of O2 and high CO2 concentration on PC char burning rates during oxy-fuel combustion. In: The 33rd international technical conference on coal utilization and fuel systems. Clearwater, FL, USA; 2008.
Zurück zum Zitat Shaddix CR, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst. 2009;32:2091–9.CrossRef Shaddix CR, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst. 2009;32:2091–9.CrossRef
Zurück zum Zitat Shaddix CR, Smyth KC. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame. 1996;107:418–52.CrossRef Shaddix CR, Smyth KC. Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame. 1996;107:418–52.CrossRef
Zurück zum Zitat Shimizu T, Abid AD, Poskrebyshev G, et al. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combust Flame. 2010;157:421–35.CrossRef Shimizu T, Abid AD, Poskrebyshev G, et al. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combust Flame. 2010;157:421–35.CrossRef
Zurück zum Zitat Smith KL, Smoot LD, Flecther TH, et al. The structure and reaction processes of coal. New York: The Springer Chemical Engineering Series; 1994. p. 209–323.CrossRef Smith KL, Smoot LD, Flecther TH, et al. The structure and reaction processes of coal. New York: The Springer Chemical Engineering Series; 1994. p. 209–323.CrossRef
Zurück zum Zitat Solomon PR, Hamblen DG, Carangelo RM, et al. General-model of coal devolatilization. Energy Fuels. 1988;2(4):405–22.CrossRef Solomon PR, Hamblen DG, Carangelo RM, et al. General-model of coal devolatilization. Energy Fuels. 1988;2(4):405–22.CrossRef
Zurück zum Zitat Solomon PR, Chien PL, Serio RM, et al. New ignition phenomenon in cola combustion. Combust Flame. 1990;79:214–5.CrossRef Solomon PR, Chien PL, Serio RM, et al. New ignition phenomenon in cola combustion. Combust Flame. 1990;79:214–5.CrossRef
Zurück zum Zitat Solomon PR, Fletcher TH, Pugmire RJ. Progress in coal pyrolysis. Fuel. 1992a;72:587–97.CrossRef Solomon PR, Fletcher TH, Pugmire RJ. Progress in coal pyrolysis. Fuel. 1992a;72:587–97.CrossRef
Zurück zum Zitat Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis—experiments, kinetic rates and mechanisms. Prog Energy Combust Sci. 1992b;18(2):133–220.CrossRef Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis—experiments, kinetic rates and mechanisms. Prog Energy Combust Sci. 1992b;18(2):133–220.CrossRef
Zurück zum Zitat Su S, Pohl JH, Holcombe D, et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers. Prog Energy Combust Sci. 2001;27:75–98.CrossRef Su S, Pohl JH, Holcombe D, et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers. Prog Energy Combust Sci. 2001;27:75–98.CrossRef
Zurück zum Zitat Suuberg EM. Rapid pyrolysis and hydropyrolysis of coal [Ph.D.]. Boston: Massachusetts Institute of Technology; 1978. Suuberg EM. Rapid pyrolysis and hydropyrolysis of coal [Ph.D.]. Boston: Massachusetts Institute of Technology; 1978.
Zurück zum Zitat Suuberg EM. Fundamental issues in control of carbon gasification reactivity. Dordrecht: Kluwer Academic Publishers; 1991. Suuberg EM. Fundamental issues in control of carbon gasification reactivity. Dordrecht: Kluwer Academic Publishers; 1991.
Zurück zum Zitat Van Eyk PJ, Ashman PJ, Alwahabi ZT, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combust Flame. 2008;155:529–37.CrossRef Van Eyk PJ, Ashman PJ, Alwahabi ZT, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combust Flame. 2008;155:529–37.CrossRef
Zurück zum Zitat Van Eyk PJ, Ashman PJ, Alwahabi AT, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combust Flame. 2011;158:1181–92.CrossRef Van Eyk PJ, Ashman PJ, Alwahabi AT, et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame. Combust Flame. 2011;158:1181–92.CrossRef
Zurück zum Zitat Varhegyi G, Szabo P, Jakab E, et al. Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixtures. Energy Fuels. 1996;10:1208–14.CrossRef Varhegyi G, Szabo P, Jakab E, et al. Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixtures. Energy Fuels. 1996;10:1208–14.CrossRef
Zurück zum Zitat Vilimpoc V, Goss LP. SiC-based thin-filament pyrometry: theory and thermal properties. Proc Combust Inst. 1989;22:1907–14.CrossRef Vilimpoc V, Goss LP. SiC-based thin-filament pyrometry: theory and thermal properties. Proc Combust Inst. 1989;22:1907–14.CrossRef
Zurück zum Zitat Wall TF. Combustion processes for carbon capture. Proc Combust Inst. 2007;31:31–47.CrossRef Wall TF. Combustion processes for carbon capture. Proc Combust Inst. 2007;31:31–47.CrossRef
Zurück zum Zitat Wall TF, Liu GS, Wu HW, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog Energy Combust Sci. 2002;28(5):405–33.CrossRef Wall TF, Liu GS, Wu HW, et al. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog Energy Combust Sci. 2002;28(5):405–33.CrossRef
Zurück zum Zitat Walsh KT, Fielding J, Smooke MD, et al. Experimental and computational study of temperature, species, and soot in buoyant and non buoyant coflow laminar diffusion flames. Proc Combust Inst. 2000;28:1973–80.CrossRef Walsh KT, Fielding J, Smooke MD, et al. Experimental and computational study of temperature, species, and soot in buoyant and non buoyant coflow laminar diffusion flames. Proc Combust Inst. 2000;28:1973–80.CrossRef
Zurück zum Zitat Weidmann M, Werbaere V, Boutin G, et al. Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kWth). Appl Therm Eng. 2015;74(5):96–101.CrossRef Weidmann M, Werbaere V, Boutin G, et al. Detailed investigation of flameless oxidation of pulverized coal at pilot-scale (230 kWth). Appl Therm Eng. 2015;74(5):96–101.CrossRef
Zurück zum Zitat Wheeler A. Reaction rates and selectivity in catalyst pores. Adv Catal. 1951;3:249–427. Wheeler A. Reaction rates and selectivity in catalyst pores. Adv Catal. 1951;3:249–427.
Zurück zum Zitat Wu N. Experimental methodology investigation of pulverized coal combustion in counterflow flames [Ph.D.]. Beijing: Tsinghua University; 2013 (in Chinese). Wu N. Experimental methodology investigation of pulverized coal combustion in counterflow flames [Ph.D.]. Beijing: Tsinghua University; 2013 (in Chinese).
Zurück zum Zitat Xiong G. Experimental study of soot formation during the combustion of coal and biomass [Ph.D.]. Beijing: Tsinghua University; 2011 (in Chinese). Xiong G. Experimental study of soot formation during the combustion of coal and biomass [Ph.D.]. Beijing: Tsinghua University; 2011 (in Chinese).
Zurück zum Zitat Yao Q, Ceng KF, Shi ZL, et al. Test studies on properties of coal mixtures with different apportionments. Power Eng. 1997;17(2):16–20 (in Chinese). Yao Q, Ceng KF, Shi ZL, et al. Test studies on properties of coal mixtures with different apportionments. Power Eng. 1997;17(2):16–20 (in Chinese).
Zurück zum Zitat Yao Q, Li SQ, Xu HW, et al. Studies on formation and control of combustion particulate matter in China: a review. Energy. 2009;34:1296–309.CrossRef Yao Q, Li SQ, Xu HW, et al. Studies on formation and control of combustion particulate matter in China: a review. Energy. 2009;34:1296–309.CrossRef
Zurück zum Zitat Yeasmin H, Mathews JF, Ouyang S. Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures. Fuel. 1999;78(1):11–24.CrossRef Yeasmin H, Mathews JF, Ouyang S. Rapid devolatilisation of Yallourn brown coal at high pressures and temperatures. Fuel. 1999;78(1):11–24.CrossRef
Zurück zum Zitat Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32:1819–38.CrossRef Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32:1819–38.CrossRef
Zurück zum Zitat Yu DY. Modal recognition and formation mechanism of fine particulate matter from coal combustion [Ph.D.]. Wuhan; Huazhong University of Science and Technology; 2007 (in Chinese). Yu DY. Modal recognition and formation mechanism of fine particulate matter from coal combustion [Ph.D.]. Wuhan; Huazhong University of Science and Technology; 2007 (in Chinese).
Zurück zum Zitat Yuan Y, Li SQ, Li GD, et al. The transition of heterogeneous–homogeneous ignitions of dispersed coal particle streams. Combust Flame. 2014;161:2458–68.CrossRef Yuan Y, Li SQ, Li GD, et al. The transition of heterogeneous–homogeneous ignitions of dispersed coal particle streams. Combust Flame. 2014;161:2458–68.CrossRef
Zurück zum Zitat Zhang MC. Flame stability analysis of tangential circle flame and pulverized coal ignition [Ph.D.]. Beijing: Tsinghua University; 1990 (in Chinese). Zhang MC. Flame stability analysis of tangential circle flame and pulverized coal ignition [Ph.D.]. Beijing: Tsinghua University; 1990 (in Chinese).
Zurück zum Zitat Zhang MC, Xu XC. On the ignition mode of pulverized coal particle. Thermal Power Generation. 1992;1:5–11 (In chinese). Zhang MC, Xu XC. On the ignition mode of pulverized coal particle. Thermal Power Generation. 1992;1:5–11 (In chinese).
Zurück zum Zitat Zhang YY. Dynamics of nano-aerosol in stagnation flames [Ph.D.]. Beijing: Tsinghua University; 2013 (in Chinese). Zhang YY. Dynamics of nano-aerosol in stagnation flames [Ph.D.]. Beijing: Tsinghua University; 2013 (in Chinese).
Zurück zum Zitat Zhang J, Han CL, Yan Z, et al. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion. Energy Fuels. 2001;15:786–93.CrossRef Zhang J, Han CL, Yan Z, et al. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion. Energy Fuels. 2001;15:786–93.CrossRef
Zurück zum Zitat Zhang YY, Gang X, Li SQ, et al. Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis. Combust Flame. 2013;160(3):725–33.CrossRef Zhang YY, Gang X, Li SQ, et al. Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis. Combust Flame. 2013;160(3):725–33.CrossRef
Zurück zum Zitat Zhang YY, Li SQ, Ren YH, et al. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas. Appl Phys Lett. 2014;104:023115.CrossRef Zhang YY, Li SQ, Ren YH, et al. Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas. Appl Phys Lett. 2014;104:023115.CrossRef
Zurück zum Zitat Zhuo JK. Experimental study on formation mechanism of submicron particles in pulverized coal combustion process [Ph.D.]. Beijing: Tsinghua University; 2008 (in Chinese). Zhuo JK. Experimental study on formation mechanism of submicron particles in pulverized coal combustion process [Ph.D.]. Beijing: Tsinghua University; 2008 (in Chinese).
Zurück zum Zitat Zhuo JK, Li SQ, Yao Q, et al. The progressive formation of submicron particulate matter in a quasi one-dimensional pulverized coal combustor. Proc Combust Inst. 2009;32:2059–66.CrossRef Zhuo JK, Li SQ, Yao Q, et al. The progressive formation of submicron particulate matter in a quasi one-dimensional pulverized coal combustor. Proc Combust Inst. 2009;32:2059–66.CrossRef
Metadaten
Titel
Introduction
verfasst von
Ye Yuan
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4813-5_1