Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Mario Junior Mencagli

Erschienen in: Manipulation of Surface Waves through Metasurfaces

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metamaterials (MTMs) are artificial materials that are structured at a subwavelength scale to exhibit desired effective constitutive parameters. Achievable material parameters can include those not found in nature (Veselago, Sov Phys Usp 10(4):509, 1968, [1], Pendry, Phys Rev Lett 85:3966–3969, 2000, [2], Shelby et al., Science 292(5514):77–79, 2001, [3]). MTMs can be formed by periodic arrangements of many small inclusions in a dielectric host environment, so that the resulting effective medium possesses desired bulk properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov Phys Usp 10(4):509 Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov Phys Usp 10(4):509
2.
Zurück zum Zitat Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969 Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969
3.
Zurück zum Zitat Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79 Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79
4.
Zurück zum Zitat Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 54(2):10–35 Holloway CL, Kuester EF, Gordon JA, O’Hara J, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag Mag 54(2):10–35
5.
Zurück zum Zitat Minatti G, Faenzi M, Martini E, Caminita F, Vita PD, González-Ovejero D, Sabbadini M, Maci S (2015) Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans Antennas Propag 63(4):1288–1300 Minatti G, Faenzi M, Martini E, Caminita F, Vita PD, González-Ovejero D, Sabbadini M, Maci S (2015) Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans Antennas Propag 63(4):1288–1300
6.
Zurück zum Zitat Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339(6125) Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339(6125)
7.
Zurück zum Zitat Chen P-Y, Soric J, Padooru YR, Bernety HM, Yakovlev AB, Alú A (2013) Nanostructured graphene metasurface for tunable terahertz cloaking. New J Phys 15(12):123029 Chen P-Y, Soric J, Padooru YR, Bernety HM, Yakovlev AB, Alú A (2013) Nanostructured graphene metasurface for tunable terahertz cloaking. New J Phys 15(12):123029
8.
Zurück zum Zitat Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12(12):6328–6333 Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12(12):6328–6333
9.
Zurück zum Zitat Maci S, Minatti G, Casaletti M, Bosiljevac M (2011) Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel Propag Lett 10:1499–1502 Maci S, Minatti G, Casaletti M, Bosiljevac M (2011) Metasurfing: addressing waves on impenetrable metasurfaces. IEEE Antennas Wirel Propag Lett 10:1499–1502
10.
Zurück zum Zitat Patel AM, Grbic A (2013) Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans Microw Theory Tech 61(4):1403–1413 Patel AM, Grbic A (2013) Effective surface impedance of a printed-circuit tensor impedance surface (PCTIS). IEEE Trans Microw Theory Tech 61(4):1403–1413
11.
Zurück zum Zitat Patel AM, Grbic A (2013) Modeling and analysis of printed-circuit tensor impedance surfaces. IEEE Trans Antennas Propag 61(1):211–220 Patel AM, Grbic A (2013) Modeling and analysis of printed-circuit tensor impedance surfaces. IEEE Trans Antennas Propag 61(1):211–220
12.
Zurück zum Zitat Patel AM, Grbic A (2014) The effects of spatial dispersion on power flow along a printed-circuit tensor impedance surface. IEEE Trans Antennas Propag 62(3):1464–1469 Patel AM, Grbic A (2014) The effects of spatial dispersion on power flow along a printed-circuit tensor impedance surface. IEEE Trans Antennas Propag 62(3):1464–1469
13.
Zurück zum Zitat Fong BH, Colburn JS, Ottusch JJ, Visher JL, Sievenpiper DF (2010) Scalar and tensor holographic artificial impedance surfaces. IEEE Trans Antennas Propag 58(10):3212–3221 Fong BH, Colburn JS, Ottusch JJ, Visher JL, Sievenpiper DF (2010) Scalar and tensor holographic artificial impedance surfaces. IEEE Trans Antennas Propag 58(10):3212–3221
14.
Zurück zum Zitat Minatti G, Maci S, Vita PD, Freni A, Sabbadini M (2012) A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans Antennas Propag 60(11):4998–5009 Minatti G, Maci S, Vita PD, Freni A, Sabbadini M (2012) A circularly-polarized isoflux antenna based on anisotropic metasurface. IEEE Trans Antennas Propag 60(11):4998–5009
15.
Zurück zum Zitat Minatti G, Caminita F, Casaletti M, Maci S (2011) Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans Antennas Propag 59(12):4436–4444 Minatti G, Caminita F, Casaletti M, Maci S (2011) Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans Antennas Propag 59(12):4436–4444
16.
Zurück zum Zitat Faenzi M, Caminita F, Martini E, Vita PD, Minatti G, Sabbadini M, Maci S (2016) Realization and measurement of broadside beam modulated metasurface antennas. IEEE Antennas Wirel Propag Lett 15:610–613 Faenzi M, Caminita F, Martini E, Vita PD, Minatti G, Sabbadini M, Maci S (2016) Realization and measurement of broadside beam modulated metasurface antennas. IEEE Antennas Wirel Propag Lett 15:610–613
17.
Zurück zum Zitat Minatti G, Caminita F, Martini E, Maci S (2016) Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans Antennas Propag 64(9):3896–3906 Minatti G, Caminita F, Martini E, Maci S (2016) Flat optics for leaky-waves on modulated metasurfaces: adiabatic floquet-wave analysis. IEEE Trans Antennas Propag 64(9):3896–3906
18.
Zurück zum Zitat Minatti G, Caminita F, Martini E, Sabbadini M, Maci S (2016) Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control. IEEE Trans Antennas Propag 64(9):3907–3919 Minatti G, Caminita F, Martini E, Sabbadini M, Maci S (2016) Synthesis of modulated-metasurface antennas with amplitude, phase, and polarization control. IEEE Trans Antennas Propag 64(9):3907–3919
19.
Zurück zum Zitat Pfeiffer C, Grbic A (2013) Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans Microw Theory Tech 61(12):4407–4417 Pfeiffer C, Grbic A (2013) Millimeter-wave transmitarrays for wavefront and polarization control. IEEE Trans Microw Theory Tech 61(12):4407–4417
20.
Zurück zum Zitat Patel AM, Grbic A (2014) Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans Microw Theory Tech 62(5):1102–1111 Patel AM, Grbic A (2014) Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Trans Microw Theory Tech 62(5):1102–1111
21.
Zurück zum Zitat Caminita F, Martini E, Minatti G, Maci S (2016) Fast integral equation method for metasurface antennas. In: 2016 URSI international symposium on electromagnetic theory (EMTS), pp 480–483 Caminita F, Martini E, Minatti G, Maci S (2016) Fast integral equation method for metasurface antennas. In: 2016 URSI international symposium on electromagnetic theory (EMTS), pp 480–483
22.
Zurück zum Zitat Maci S, Cucini A (2006) FSS-based EBG surfaces. In: Engheta N, Ziolkowski R (eds) Electromagnetic metamaterials: physics and engineering aspects. IEEE-Wiley, New York Maci S, Cucini A (2006) FSS-based EBG surfaces. In: Engheta N, Ziolkowski R (eds) Electromagnetic metamaterials: physics and engineering aspects. IEEE-Wiley, New York
23.
Zurück zum Zitat Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen AV, Tretyakov SA (2008) Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antennas Propag 56(6):1624–1632 Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen AV, Tretyakov SA (2008) Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antennas Propag 56(6):1624–1632
24.
Zurück zum Zitat Ramaccia D, Toscano A, Bilotti F (2011) A new accurate model of high-impedance surfaces consisting of circular patches. Prog Electromagn Res M 21:1–17 Ramaccia D, Toscano A, Bilotti F (2011) A new accurate model of high-impedance surfaces consisting of circular patches. Prog Electromagn Res M 21:1–17
25.
Zurück zum Zitat Martini E, Maci S (2014) Metasurface transformation theory. In: Werner DH, Kwon D-H (eds) Transformation electromagnetics and metamaterials. Springer, London, pp 83–116 Martini E, Maci S (2014) Metasurface transformation theory. In: Werner DH, Kwon D-H (eds) Transformation electromagnetics and metamaterials. Springer, London, pp 83–116
26.
Zurück zum Zitat Kwon DH, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52(1):24–46 Kwon DH, Werner DH (2010) Transformation electromagnetics: an overview of the theory and applications. IEEE Antennas Propag Mag 52(1):24–46
27.
Zurück zum Zitat Kwon D-H, Werner DH (2008) Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express 16(23):18731–18738 Kwon D-H, Werner DH (2008) Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express 16(23):18731–18738
28.
Zurück zum Zitat Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100:063903 Rahm M, Cummer SA, Schurig D, Pendry JB, Smith DR (2008) Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys Rev Lett 100:063903
29.
Zurück zum Zitat Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980 Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–980
30.
Zurück zum Zitat Edwards B, Alù A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901 Edwards B, Alù A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901
Metadaten
Titel
Introduction
verfasst von
Mario Junior Mencagli
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-14034-2_1

Neuer Inhalt