Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Prof. Dr. Chang Q Sun

Erschienen in: Solvation Dynamics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Overwhelming contributions have been made since two-century-long ago to understanding the solvation dynamics, solute-solute and solute-solvent molecular interactions, and solution properties from various perspectives. Limited knowledge about the solvent water structure and hydrogen bond cooperativity (O:H–O or HB with “:” being the nonbonding electron lone pairs pertained to oxygen upon sp3-orbital hybridization) hindered the progress. Amplification of the phonon spectroscopy to spectrometrics and of the perspective of molecular motion to hydration bonding dynamics would be necessary towards the solute capabilities of transiting the ordinary O:H–O bond to the hydrating states and their impact to the performance of solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRef C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRef
3.
Zurück zum Zitat C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)PubMedCrossRef C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)PubMedCrossRef
4.
Zurück zum Zitat P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)PubMedCrossRef P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)PubMedCrossRef
5.
Zurück zum Zitat J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)PubMedPubMedCentralCrossRef J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat J. Kim, D. Won, B. Sung, W. Jhe, Observation of universal solidification in the elongated water nanomeniscus. J. Phys. Chem. Lett., 737–742 (2014)PubMedCrossRef J. Kim, D. Won, B. Sung, W. Jhe, Observation of universal solidification in the elongated water nanomeniscus. J. Phys. Chem. Lett., 737–742 (2014)PubMedCrossRef
7.
Zurück zum Zitat M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett., 2881–2887 (2015) M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett., 2881–2887 (2015)
8.
Zurück zum Zitat W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett., 4247–4252 (2013)PubMedCrossRef W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett., 4247–4252 (2013)PubMedCrossRef
9.
Zurück zum Zitat F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archiv f experiment Pathol u Pharmakol 25(1), 1–30 (1888)CrossRef F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archiv f experiment Pathol u Pharmakol 25(1), 1–30 (1888)CrossRef
10.
Zurück zum Zitat F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)CrossRef F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)CrossRef
11.
Zurück zum Zitat S. Arrhenius, Development of the Theory of Electrolytic Dissociation. Nobel Lecture (1903) S. Arrhenius, Development of the Theory of Electrolytic Dissociation. Nobel Lecture (1903)
12.
Zurück zum Zitat J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRef J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRef
13.
Zurück zum Zitat T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRef T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRef
14.
Zurück zum Zitat G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)CrossRef G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)CrossRef
15.
Zurück zum Zitat D. Chandler, From 50 years ago, the birth of modern liquid-state science. Annu. Rev. Phys. Chem. 68, 19–38 (2017)PubMedCrossRef D. Chandler, From 50 years ago, the birth of modern liquid-state science. Annu. Rev. Phys. Chem. 68, 19–38 (2017)PubMedCrossRef
16.
Zurück zum Zitat J. Li, Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys. 105(16), 6733–6755 (1996)CrossRef J. Li, Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys. 105(16), 6733–6755 (1996)CrossRef
17.
Zurück zum Zitat I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRef I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRef
18.
Zurück zum Zitat J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRef J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRef
19.
Zurück zum Zitat Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRef Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRef
20.
Zurück zum Zitat X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRef X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRef
21.
Zurück zum Zitat Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRef Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRef
22.
Zurück zum Zitat J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Select 2(27), 8517–8523 (2017) J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Select 2(27), 8517–8523 (2017)
23.
Zurück zum Zitat Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H-O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)CrossRef Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H-O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)CrossRef
24.
Zurück zum Zitat Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRef Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRef
25.
Zurück zum Zitat Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRef Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRef
26.
Zurück zum Zitat Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRef Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRef
27.
Zurück zum Zitat S. Dixit, J. Crain, W. Poon, J. Finney, A. Soper, Molecular segregation observed in a concentrated alcohol–water solution. Nature 416(6883), 829 (2002)PubMedCrossRef S. Dixit, J. Crain, W. Poon, J. Finney, A. Soper, Molecular segregation observed in a concentrated alcohol–water solution. Nature 416(6883), 829 (2002)PubMedCrossRef
28.
Zurück zum Zitat A. Mandal, K. Ramasesha, L. De Marco, A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J. Chem. Phys. 140(20), 204508 (2014)PubMedCrossRef A. Mandal, K. Ramasesha, L. De Marco, A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J. Chem. Phys. 140(20), 204508 (2014)PubMedCrossRef
29.
Zurück zum Zitat S.T. Roberts, P.B. Petersen, K. Ramasesha, A. Tokmakoff, I.S. Ufimtsev, T.J. Martinez, Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proc. Natl. Acad. Sci. 106(36), 15154–15159 (2009)PubMedPubMedCentralCrossRef S.T. Roberts, P.B. Petersen, K. Ramasesha, A. Tokmakoff, I.S. Ufimtsev, T.J. Martinez, Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proc. Natl. Acad. Sci. 106(36), 15154–15159 (2009)PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRef M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRef
32.
Zurück zum Zitat M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRef M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRef
33.
Zurück zum Zitat S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedCrossRef S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedCrossRef
35.
Zurück zum Zitat Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefPubMed Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefPubMed
36.
Zurück zum Zitat H. Chen, W. Gan, B.-H. Wu, D. Wu, Y. Guo, and H.-F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phys. Chem. B 109(16), 8053–8063 (2005)PubMedCrossRef H. Chen, W. Gan, B.-H. Wu, D. Wu, Y. Guo, and H.-F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phys. Chem. B 109(16), 8053–8063 (2005)PubMedCrossRef
37.
Zurück zum Zitat S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117(16), 10665–10693 (2017)PubMedCrossRef S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117(16), 10665–10693 (2017)PubMedCrossRef
38.
Zurück zum Zitat N. Ji, V. Ostroverkhov, C. Tian, Y. Shen, Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100(9), 096102 (2008)PubMedCrossRef N. Ji, V. Ostroverkhov, C. Tian, Y. Shen, Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100(9), 096102 (2008)PubMedCrossRef
39.
Zurück zum Zitat S. Nihonyanagi, S. Yamaguchi, T. Tahara, Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130(20), 204704 (2009) S. Nihonyanagi, S. Yamaguchi, T. Tahara, Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130(20), 204704 (2009)
40.
Zurück zum Zitat Y.R. Shen, Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116, 15505–15509 (2012)CrossRef Y.R. Shen, Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116, 15505–15509 (2012)CrossRef
41.
Zurück zum Zitat J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2 + proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRef J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2 + proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRef
42.
Zurück zum Zitat C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)PubMedCrossRef C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)PubMedCrossRef
43.
Zurück zum Zitat X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRef X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRef
44.
Zurück zum Zitat Y. Gavrilov, J.D. Leuchter, Y. Levy, On the coupling between the dynamics of protein and water. Phys. Chem. Chem. Phys. 19(12), 8243–8257 (2017)PubMedCrossRef Y. Gavrilov, J.D. Leuchter, Y. Levy, On the coupling between the dynamics of protein and water. Phys. Chem. Chem. Phys. 19(12), 8243–8257 (2017)PubMedCrossRef
45.
Zurück zum Zitat C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)PubMedCrossRef C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)PubMedCrossRef
46.
Zurück zum Zitat F. Li, Z. Li, S. Wang, S. Li, Z. Men, S. Ouyang, C. Sun, Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. Spectrochim. Acta A 183, 425–430 (2017)CrossRef F. Li, Z. Li, S. Wang, S. Li, Z. Men, S. Ouyang, C. Sun, Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. Spectrochim. Acta A 183, 425–430 (2017)CrossRef
47.
Zurück zum Zitat C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRef C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRef
48.
Zurück zum Zitat W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theor. Comput. 12(10), 5117–5131 (2016)CrossRef W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theor. Comput. 12(10), 5117–5131 (2016)CrossRef
49.
Zurück zum Zitat T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRef T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRef
50.
Zurück zum Zitat Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRef Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRef
51.
Zurück zum Zitat J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRef J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRef
52.
Zurück zum Zitat K. Wark, Generalized Thermodynamic Relationships in the Thermodynamics, 5th edn. (McGraw-Hill, Inc., New York., 1988 K. Wark, Generalized Thermodynamic Relationships in the Thermodynamics, 5th edn. (McGraw-Hill, Inc., New York., 1988
53.
Zurück zum Zitat O. Alduchov, R. Eskridge, Improved Magnus’ Form Approximation of Saturation Vapor Pressure, in Department of Commerce (Asheville, NC (United States), 1997)CrossRef O. Alduchov, R. Eskridge, Improved Magnus’ Form Approximation of Saturation Vapor Pressure, in Department of Commerce (Asheville, NC (United States), 1997)CrossRef
54.
Zurück zum Zitat G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)CrossRef G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)CrossRef
56.
Zurück zum Zitat J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)PubMedCrossRef J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)PubMedCrossRef
57.
Zurück zum Zitat K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Colloquiu: water’s controversial glass transitions. Rev. Modern Phys. 88(1), 011002 (2016)CrossRef K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Colloquiu: water’s controversial glass transitions. Rev. Modern Phys. 88(1), 011002 (2016)CrossRef
58.
Zurück zum Zitat C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique, Raman scattering and NMR. Phys. B 291(1), 180–189 (2000)CrossRef C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique, Raman scattering and NMR. Phys. B 291(1), 180–189 (2000)CrossRef
59.
Zurück zum Zitat J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)PubMedCrossRef J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)PubMedCrossRef
60.
Zurück zum Zitat Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. Lett. 5(9), 1541–1546 (2014)PubMedCrossRef Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. Lett. 5(9), 1541–1546 (2014)PubMedCrossRef
61.
Zurück zum Zitat S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)PubMedCrossRef S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)PubMedCrossRef
62.
Zurück zum Zitat J. Guo, X.-Z. Li, J. Peng, E.-G. Wang, Y. Jiang, Atomic-scale investigation of nuclear quantum effects of surface water: experiments and theory. Prog. Surf. Sci. 92(4), 203–239 (2017)CrossRef J. Guo, X.-Z. Li, J. Peng, E.-G. Wang, Y. Jiang, Atomic-scale investigation of nuclear quantum effects of surface water: experiments and theory. Prog. Surf. Sci. 92(4), 203–239 (2017)CrossRef
63.
Zurück zum Zitat J. Peng, J. Guo, R. Ma, X. Meng, Y. Jiang, Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature. J. Phys.: Condens. Matter 29(10), 104001 (2017) J. Peng, J. Guo, R. Ma, X. Meng, Y. Jiang, Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature. J. Phys.: Condens. Matter 29(10), 104001 (2017)
64.
Zurück zum Zitat J. Peng, J. Guo, P. Hapala, D. Cao, R. Ma, B. Cheng, L. Xu, M. Ondráček, P. Jelínek, E. Wang, Y. Jiang, Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9(1), 122 (2018)PubMedPubMedCentralCrossRef J. Peng, J. Guo, P. Hapala, D. Cao, R. Ma, B. Cheng, L. Xu, M. Ondráček, P. Jelínek, E. Wang, Y. Jiang, Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9(1), 122 (2018)PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys., vol. 113 (Springer, Heidelberg, 2016), 494pp C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys., vol. 113 (Springer, Heidelberg, 2016), 494pp
66.
Zurück zum Zitat Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRef Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRef
67.
Zurück zum Zitat Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)PubMedCrossRef Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)PubMedCrossRef
68.
Zurück zum Zitat X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)PubMedCrossRef X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)PubMedCrossRef
69.
Zurück zum Zitat C.Q. Sun, Atomic Scale Purification of Electron Spectroscopic Information (US 2017 patent No. 9,625,397B2). United States (2017) C.Q. Sun, Atomic Scale Purification of Electron Spectroscopic Information (US 2017 patent No. 9,625,397B2). United States (2017)
70.
Zurück zum Zitat Y. Gong, Y. Zhou, C. Sun, Phonon Spectrometrics of the Hydrogen Bond (O:H–O) Segmental Length and Energy Relaxation Under Excitation, B.o. intelligence, Editor. China (2018) Y. Gong, Y. Zhou, C. Sun, Phonon Spectrometrics of the Hydrogen Bond (O:H–O) Segmental Length and Energy Relaxation Under Excitation, B.o. intelligence, Editor. China (2018)
71.
Zurück zum Zitat C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRef C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRef
72.
Zurück zum Zitat Y. Zhou, Yuan Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248(432–438) (2017) Y. Zhou, Yuan Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248(432–438) (2017)
73.
Zurück zum Zitat Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)CrossRef Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)CrossRef
74.
Zurück zum Zitat C. Ni, Y. Gong, X. Liu, C.Q. Sun, Z. Zhou, The anti-frozen attribute of sugar solutions. J. Mol. Liq. 247, 337–344 (2017)CrossRef C. Ni, Y. Gong, X. Liu, C.Q. Sun, Z. Zhou, The anti-frozen attribute of sugar solutions. J. Mol. Liq. 247, 337–344 (2017)CrossRef
75.
Zurück zum Zitat J. Chen, C. Yao, X. Zhang, C.Q. Sun, Y. Huang, Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. J. Mol. Liq. 249, 494–500 (2018)CrossRef J. Chen, C. Yao, X. Zhang, C.Q. Sun, Y. Huang, Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. J. Mol. Liq. 249, 494–500 (2018)CrossRef
76.
Zurück zum Zitat Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)PubMedCrossRef Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)PubMedCrossRef
77.
Zurück zum Zitat C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRef C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRef
78.
Zurück zum Zitat C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)PubMedCrossRef C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)PubMedCrossRef
Metadaten
Titel
Introduction
verfasst von
Prof. Dr. Chang Q Sun
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8441-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.