Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Andreas Grimmer, Robert Wille

Erschienen in: Designing Droplet Microfluidic Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter provides an introduction into microfluidics in general and droplet microfluidic networks in particular. It briefly reviews the state-of-the-art design process for such devices and discusses the contributions made in this book to improve it. By this, the chapter gives an overview of the book and its contributions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
 
3
A bypass channel [20] connects the endpoints of the two successor channels. This bypass cannot be entered by any droplet and is used to make the droplet routing only dependent on the resistances of the successors.
 
4
Note that simulation as proposed in Chap. 3 often also provides the basis for other contributions (cf. Chap. 4 or 8) and, hence, is covered right after the Background in Chap. 3.
 
Literatur
6.
Zurück zum Zitat A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef A. Biral, A. Zanella, Introducing purely hydrodynamic networking functionalities into microfluidic systems. Nano Commun. Netw. 4(4), 205–215 (2013)CrossRef
13.
Zurück zum Zitat X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef X. Chen, C.L. Ren, A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing. RSC Adv. 7(27), 16738–16750 (2017)CrossRef
20.
Zurück zum Zitat G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef G. Cristobal, J.-P. Benoit, M. Joanicot, A. Ajdari, Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Appl. Phys. Lett. 89(3), 34104–34104 (2006)CrossRef
32.
Zurück zum Zitat M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles. Lab Chip 7(11), 1479–1489 (2007)CrossRef
35.
Zurück zum Zitat T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)MATHCrossRef T. Glatzel, C. Litterst, C. Cupelli, T. Lindemann, C. Moosmann, R. Niekrawietz, W. Streule, R. Zengerle, P. Koltay, Computational fluid dynamics (CFD) software tools for microfluidic applications–a case study. Comput. Fluids 37(3), 218–235 (2008)MATHCrossRef
36.
Zurück zum Zitat T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef T. Glawdel, C.L. Ren, Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Microfluid. Nanofluid. 13(3), 469–480 (2012)CrossRef
37.
Zurück zum Zitat T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef T. Glawdel, C. Elbuken, C. Ren, Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Lab Chip 11(22), 3774–3784 (2011)CrossRef
43.
Zurück zum Zitat A. Grimmer, W. Haselmayr, A. Springer, R. Wille, A discrete model for Networked Labs-on-Chips: linking the physical world to design automation, in Design Automation Conference (2017), pp. 50:1–50:6 A. Grimmer, W. Haselmayr, A. Springer, R. Wille, A discrete model for Networked Labs-on-Chips: linking the physical world to design automation, in Design Automation Conference (2017), pp. 50:1–50:6
44.
Zurück zum Zitat A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Verification of Networked Labs-on-Chip architectures, in Design, Automation and Test in Europe (2017), pp. 1679–1684 A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Verification of Networked Labs-on-Chip architectures, in Design, Automation and Test in Europe (2017), pp. 1679–1684
45.
Zurück zum Zitat A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, R. Wille, Close-to-optimal placement and routing for continuous-flow microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017), pp. 530–535 A. Grimmer, Q. Wang, H. Yao, T.-Y. Ho, R. Wille, Close-to-optimal placement and routing for continuous-flow microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017), pp. 530–535
46.
Zurück zum Zitat A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef A. Grimmer, X. Chen, M. Hamidović, W. Haselmayr, C.L. Ren, R. Wille, Simulation before fabrication: a case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Adv. 8, 34733–34742 (2018)CrossRef
47.
Zurück zum Zitat A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef A. Grimmer, P. Frank, P. Ebner, S. Häfner, A. Richter, R. Wille, Meander designer: automatically generating meander channel designs. Micromach. J. Micro/Nano Sci. Dev. Appl. 9(12), 625 (2018)CrossRef
48.
Zurück zum Zitat A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Design of application-specific architectures for Networked Labs-on-Chips. Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1), 193–202 (2018)CrossRef A. Grimmer, W. Haselmayr, A. Springer, R. Wille, Design of application-specific architectures for Networked Labs-on-Chips. Trans. Comput. Aided Des. Integr. Circuits Syst. 37(1), 193–202 (2018)CrossRef
53.
Zurück zum Zitat D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRef D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRef
54.
Zurück zum Zitat D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in International Conference on Very Large Scale Integration of System-on-Chip (2012), pp. 177–182 D. Grissom, K. O’Neal, B. Preciado, H. Patel, R. Doherty, N. Liao, P. Brisk, A digital microfluidic biochip synthesis framework, in International Conference on Very Large Scale Integration of System-on-Chip (2012), pp. 177–182
55.
Zurück zum Zitat H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef H. Gu, M.H. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRef
56.
Zurück zum Zitat S. Haeberle, R. Zengerle, Microfluidic platforms for Lab-on-a-Chip applications. Lab Chip 7, 1094–1110 (2007)CrossRef S. Haeberle, R. Zengerle, Microfluidic platforms for Lab-on-a-Chip applications. Lab Chip 7, 1094–1110 (2007)CrossRef
62.
Zurück zum Zitat Y.-L. Hsieh, T.-Y. Ho, K. Chakrabarty, Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 183–196 (2014)CrossRef Y.-L. Hsieh, T.-Y. Ho, K. Chakrabarty, Biochip synthesis and dynamic error recovery for sample preparation using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(2), 183–196 (2014)CrossRef
63.
Zurück zum Zitat K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRef K. Hu, F. Yu, T.-Y. Ho, K. Chakrabarty, Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)CrossRef
64.
Zurück zum Zitat W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, P. Pop, Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips, in Design, Automation and Test in Europe (2017), pp. 1671–1676 W.-L. Huang, A. Gupta, S. Roy, T.-Y. Ho, P. Pop, Fast architecture-level synthesis of fault-tolerant flow-based microfluidic biochips, in Design, Automation and Test in Europe (2017), pp. 1671–1676
71.
Zurück zum Zitat O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Design Automation Conference (2014), pp. 1–6 O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Design Automation Conference (2014), pp. 1–6
73.
Zurück zum Zitat O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017) O. Keszocze, Z. Li, A. Grimmer, R. Wille, K. Chakrabarty, R. Drechsler, Exact routing for micro-electrode-dot-array digital microfluidic biochips, in Asia and South Pacific Design Automation Conference (2017)
82.
Zurück zum Zitat E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. J. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)CrossRef E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of digital microfluidic biochips with dynamically reconfigurable non-rectangular devices. J. Des. Autom. Embed. Syst. 14(3), 287–307 (2010)CrossRef
86.
Zurück zum Zitat J. McDaniel, B. Crites, P. Brisk, W.H. Grover, Flow-layer physical design for microchips based on monolithic membrane valves. J. Des. Test 32(6), 51–59 (2015) J. McDaniel, B. Crites, P. Brisk, W.H. Grover, Flow-layer physical design for microchips based on monolithic membrane valves. J. Des. Test 32(6), 51–59 (2015)
87.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2011), pp. 225–233 W.H. Minhass, P. Pop, J. Madsen, System-level modeling and synthesis of flow-based microfluidic biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2011), pp. 225–233
88.
Zurück zum Zitat W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2012), pp. 181–190 W.H. Minhass, P. Pop, J. Madsen, F.S. Blaga, Architectural synthesis of flow-based microfluidic large-scale integration biochips, in International Conference on Compilers, Architecture and Synthesis for Embedded Systems (2012), pp. 181–190
89.
Zurück zum Zitat D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRef D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRef
91.
Zurück zum Zitat G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965) G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)
93.
Zurück zum Zitat K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012)CrossRef
95.
Zurück zum Zitat S. Poddar, S. Ghoshal, K. Chakrabarty, B.B. Bhattacharya, Error-correcting sample preparation with cyberphysical digital microfluidic Lab-on-Chip. Trans. Des. Autom. Electron. Syst. 22(1), 2 (2016)CrossRef S. Poddar, S. Ghoshal, K. Chakrabarty, B.B. Bhattacharya, Error-correcting sample preparation with cyberphysical digital microfluidic Lab-on-Chip. Trans. Des. Autom. Electron. Syst. 22(1), 2 (2016)CrossRef
96.
Zurück zum Zitat M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef M.G. Pollack, A.D. Shenderov, R.B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2), 96–101 (2002)CrossRef
97.
Zurück zum Zitat P. Pop, I.E. Araci, K. Chakrabarty, Continuous-flow biochips: technology, physical-design methods, and testing. J. Des. Test 32(6), 8–19 (2015) P. Pop, I.E. Araci, K. Chakrabarty, Continuous-flow biochips: technology, physical-design methods, and testing. J. Des. Test 32(6), 8–19 (2015)
99.
Zurück zum Zitat S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, High-throughput dilution engine for sample preparation on digital microfluidic biochips. IET Comput. Digit. Tech. 8(4), 163–171 (2014)CrossRef S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, High-throughput dilution engine for sample preparation on digital microfluidic biochips. IET Comput. Digit. Tech. 8(4), 163–171 (2014)CrossRef
101.
Zurück zum Zitat M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008) M. Schindler, A. Ajdari, Droplet traffic in microfluidic networks: a simple model for understanding and designing. Phys. Rev. Lett. 100(4), 044501 (2008)
103.
Zurück zum Zitat M.F. Schmidt, W.H. Minhass, P. Pop, J. Madsen, Modeling and simulation framework for flow-based microfluidic biochips, in Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (2013), pp. 1–6 M.F. Schmidt, W.H. Minhass, P. Pop, J. Madsen, Modeling and simulation framework for flow-based microfluidic biochips, in Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (2013), pp. 1–6
111.
Zurück zum Zitat F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRef F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. J. Emerg. Technol. Comput. Syst. 3(4), 1 (2008)CrossRef
112.
Zurück zum Zitat F. Su, S. Ozev, K. Chakrabarty, Testing of droplet-based microelectrofluidic systems, in International Test Conference, vol. 46 (2003), pp. 1192–1200 F. Su, S. Ozev, K. Chakrabarty, Testing of droplet-based microelectrofluidic systems, in International Test Conference, vol. 46 (2003), pp. 1192–1200
113.
Zurück zum Zitat F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Design, Automation and Test in Europe, vol. 1 (2006), pp. 1–6 F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Design, Automation and Test in Europe, vol. 1 (2006), pp. 1–6
117.
Zurück zum Zitat S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRef
121.
Zurück zum Zitat K.-H. Tseng, S.-C. You, J.-Y. Liou, T.-Y. Ho, A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization, in International Symposium on Physical Design (2013), pp. 123–129 K.-H. Tseng, S.-C. You, J.-Y. Liou, T.-Y. Ho, A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization, in International Symposium on Physical Design (2013), pp. 123–129
122.
Zurück zum Zitat S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef S.A. Vanapalli, A.G. Banpurkar, D. van den Ende, M.H. Duits, F. Mugele, Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Lab Chip 9(7), 982–990 (2009)CrossRef
126.
Zurück zum Zitat G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)CrossRef
127.
Zurück zum Zitat R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker, Scalable one-pass synthesis for digital microfluidic biochips. J. Des. Test 32(6), 41–50 (2015) R. Wille, O. Keszocze, R. Drechsler, T. Boehnisch, A. Kroker, Scalable one-pass synthesis for digital microfluidic biochips. J. Des. Test 32(6), 41–50 (2015)
128.
Zurück zum Zitat M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef M. Wörner, Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)CrossRef
129.
Zurück zum Zitat T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Design Automation Conference (2007), pp. 948–953 T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Design Automation Conference (2007), pp. 948–953
131.
Zurück zum Zitat Y. Zhao, K. Chakrabarty, Design and Testing of Digital Microfluidic Biochips (Springer, New York, 2012) Y. Zhao, K. Chakrabarty, Design and Testing of Digital Microfluidic Biochips (Springer, New York, 2012)
Metadaten
Titel
Introduction
verfasst von
Andreas Grimmer
Robert Wille
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-20713-7_1

Neuer Inhalt