Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Deshang Sha, Guo Xu

Erschienen in: High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a brief introduction focusing on the applications and classifications of bidirectional DC–DC converters, review of the control methods for dual active bridge control, and key issues of DAB converters. Bidirectional power flow, galvanic isolation, and wide voltage gain range are necessary for some applications such as energy storage system, automotive applications, SST-based DC fast charger. To achieve wide ZVS ranges and low current stresses for the conversion stages of these applications, the topology candidates and the corresponding power control methods have been a challenge in both industry and research communities. This chapter provides a basic foundation for the whole work, and it gives the goal of this book which is to provide valuable knowledge, advanced control methods, and practical design guides for the high-frequency isolated bidirectional dual active bridge DC–DC converters with wide voltage gain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59(6):2806–2814CrossRef Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59(6):2806–2814CrossRef
2.
Zurück zum Zitat Ribeiro PF, Johnson BK, Crow ML, Arsoy A (2001) Energy storage systems for advanced power applications. Proc IEEE 89(12):1744–1756CrossRef Ribeiro PF, Johnson BK, Crow ML, Arsoy A (2001) Energy storage systems for advanced power applications. Proc IEEE 89(12):1744–1756CrossRef
3.
Zurück zum Zitat Lukic SM, Cao J, Bansal RC, Rodriguez F, Emadi A (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258–2267CrossRef Lukic SM, Cao J, Bansal RC, Rodriguez F, Emadi A (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258–2267CrossRef
4.
Zurück zum Zitat Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM (2010) Energy storage systems for transport and grid applications. IEEE Trans Ind Electron 57(12):3881–3895CrossRef Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM (2010) Energy storage systems for transport and grid applications. IEEE Trans Ind Electron 57(12):3881–3895CrossRef
5.
Zurück zum Zitat Cao J, Emadi A (2012) A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans Power Electron 27(1):122–132CrossRef Cao J, Emadi A (2012) A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans Power Electron 27(1):122–132CrossRef
6.
Zurück zum Zitat Zhang W (2015) Energy management system in DC future home, Master’s thesis. Virginia Polytechnic Institute and State University, Blacksburg Zhang W (2015) Energy management system in DC future home, Master’s thesis. Virginia Polytechnic Institute and State University, Blacksburg
7.
Zurück zum Zitat Florian KK (2010) Modeling and optimization of bidirectional dual active bridge DC–DC converter topologies, Doctor’s thesis. Power Electronic Systems Laboratory (PES): Swiss Federal Institute of Technology Zurich (ETH Zurich) Florian KK (2010) Modeling and optimization of bidirectional dual active bridge DC–DC converter topologies, Doctor’s thesis. Power Electronic Systems Laboratory (PES): Swiss Federal Institute of Technology Zurich (ETH Zurich)
8.
Zurück zum Zitat Huang AQ, Crow ML, Heydt GT, Zheng JP, Dale SJ (2011) The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proc IEEE 99(1):133–148CrossRef Huang AQ, Crow ML, Heydt GT, Zheng JP, Dale SJ (2011) The future renewable electric energy delivery and management (FREEDM) system: the energy internet. Proc IEEE 99(1):133–148CrossRef
9.
Zurück zum Zitat Shi J, Gou W, Yuan H, Zhao T, Huang AQ (2011) Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Trans Power Electron 26(4):1154–1166CrossRef Shi J, Gou W, Yuan H, Zhao T, Huang AQ (2011) Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Trans Power Electron 26(4):1154–1166CrossRef
10.
Zurück zum Zitat She X, Huang AQ, Wang G (2011) 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Trans Power Electron 26(12):3778–3789CrossRef She X, Huang AQ, Wang G (2011) 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Trans Power Electron 26(12):3778–3789CrossRef
11.
Zurück zum Zitat Zhao T, Wang G, Bhattacharya S, Huang AQ (2012) Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Trans Power Electron 28(4):1523–1532CrossRef Zhao T, Wang G, Bhattacharya S, Huang AQ (2012) Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Trans Power Electron 28(4):1523–1532CrossRef
12.
Zurück zum Zitat She X, Huang AQ, Ni X (2014) Current sensorless power balance strategy for dc/dc converters in a cascaded multilevel converter based solid state transformer. IEEE Trans Power Electron 29(1):17–22CrossRef She X, Huang AQ, Ni X (2014) Current sensorless power balance strategy for dc/dc converters in a cascaded multilevel converter based solid state transformer. IEEE Trans Power Electron 29(1):17–22CrossRef
13.
Zurück zum Zitat Wang L, Zhang D, Wang Y, Wu B, Athab HS (2016) Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded h-bridge inverters for microgrid applications. IEEE Trans Power Electron 31(4):3289–3301CrossRef Wang L, Zhang D, Wang Y, Wu B, Athab HS (2016) Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded h-bridge inverters for microgrid applications. IEEE Trans Power Electron 31(4):3289–3301CrossRef
14.
Zurück zum Zitat Xu R, Yu Y, Yang R, Wang G, Xu D, Li B, Sui S (2015) A novel control method for transformerless H-bridge cascaded STATCOM with star configuration. IEEE Trans Power Electron 30(3):1189–1202CrossRef Xu R, Yu Y, Yang R, Wang G, Xu D, Li B, Sui S (2015) A novel control method for transformerless H-bridge cascaded STATCOM with star configuration. IEEE Trans Power Electron 30(3):1189–1202CrossRef
15.
Zurück zum Zitat Lee YS, Cheng GT (2006) Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications. IEEE Trans Power Electron 21(5):1213–1224CrossRef Lee YS, Cheng GT (2006) Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications. IEEE Trans Power Electron 21(5):1213–1224CrossRef
16.
Zurück zum Zitat Huang X, Lee FC, Li Q, Du W (2016) High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Trans Power Electron 31(6):4343–4352CrossRef Huang X, Lee FC, Li Q, Du W (2016) High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Trans Power Electron 31(6):4343–4352CrossRef
17.
Zurück zum Zitat Waffler S, Kolar JW (2009) A novel low-loss modulation strategy for high-power bidirectional buck + boost converters. IEEE Trans Power Electron 24(6):1589–1599CrossRef Waffler S, Kolar JW (2009) A novel low-loss modulation strategy for high-power bidirectional buck + boost converters. IEEE Trans Power Electron 24(6):1589–1599CrossRef
18.
Zurück zum Zitat Wang YF, Xue LK, Wang CS, Wang P, Li W (2016) Interleaved high-conversion-ratio bidirectional dc–dc converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans Power Electron 31(8):5547–5561CrossRef Wang YF, Xue LK, Wang CS, Wang P, Li W (2016) Interleaved high-conversion-ratio bidirectional dc–dc converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans Power Electron 31(8):5547–5561CrossRef
19.
Zurück zum Zitat Garcia O, Flores LA, Oliver JA, Cobos JA, De IPJ (2005) Bi-directional DC/DC converter for hybrid vehicles. In: IEEE 36th conference on power electronics specialists (PESC) 2005, pp 1881–1886 Garcia O, Flores LA, Oliver JA, Cobos JA, De IPJ (2005) Bi-directional DC/DC converter for hybrid vehicles. In: IEEE 36th conference on power electronics specialists (PESC) 2005, pp 1881–1886
20.
Zurück zum Zitat Ramachandran R, Nymand M (2016) A 98.8% efficient bidirectional full-bridge isolated dc-dc GaN converter. In: IEEE applied power electronics conference and exposition, pp 609–614 Ramachandran R, Nymand M (2016) A 98.8% efficient bidirectional full-bridge isolated dc-dc GaN converter. In: IEEE applied power electronics conference and exposition, pp 609–614
21.
Zurück zum Zitat Zhu L (2006) A novel soft-commutating isolated boost full-bridge ZVS-PWM dc–dc converter for bidirectional high power applications. IEEE Trans Power Electron 21(2):422–429CrossRef Zhu L (2006) A novel soft-commutating isolated boost full-bridge ZVS-PWM dc–dc converter for bidirectional high power applications. IEEE Trans Power Electron 21(2):422–429CrossRef
22.
Zurück zum Zitat Kim ES, Joe KY, Choi HY, Kim YH (1998) An improved soft switching bi-directional PSPWM FB DC/DC converter. In: Proceedings of the 24th annual conference of the IEEE industrial electronics society, IECON, vol 2, pp 740–743 Kim ES, Joe KY, Choi HY, Kim YH (1998) An improved soft switching bi-directional PSPWM FB DC/DC converter. In: Proceedings of the 24th annual conference of the IEEE industrial electronics society, IECON, vol 2, pp 740–743
23.
Zurück zum Zitat Wang K, Lee FC, Lai J (2000) Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability. In: Fifteenth annual IEEE applied power electronics conference and exposition (APEC), pp 111–118 Wang K, Lee FC, Lai J (2000) Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability. In: Fifteenth annual IEEE applied power electronics conference and exposition (APEC), pp 111–118
24.
Zurück zum Zitat Dedoncker RW, Kheraluwala MH, Divan DM (1991) Power conversion apparatus for dc/dc conversion using dual active bridges. US Patent 5,027,264 Dedoncker RW, Kheraluwala MH, Divan DM (1991) Power conversion apparatus for dc/dc conversion using dual active bridges. US Patent 5,027,264
25.
Zurück zum Zitat Kheraluwala MH, Gascoigne RW, Divan DM, Baumann ED (1992) Performance characterization of a high-power dual active bridge dc-to-dc converter. IEEE Trans Ind Appl 28(6):1294–1301CrossRef Kheraluwala MH, Gascoigne RW, Divan DM, Baumann ED (1992) Performance characterization of a high-power dual active bridge dc-to-dc converter. IEEE Trans Ind Appl 28(6):1294–1301CrossRef
26.
Zurück zum Zitat Chen W, Rong P, Lu Z (2010) Snubberless bidirectional dc–dc converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans Ind Electron 57(9):3075–3086CrossRef Chen W, Rong P, Lu Z (2010) Snubberless bidirectional dc–dc converter with new CLLC resonant tank featuring minimized switching loss. IEEE Trans Ind Electron 57(9):3075–3086CrossRef
27.
Zurück zum Zitat Inoue S, Akagi H (2007) A bidirectional dc–dc converter for an energy storage system with galvanic isolation. IEEE Trans Power Electron 22(6):2299–2306CrossRef Inoue S, Akagi H (2007) A bidirectional dc–dc converter for an energy storage system with galvanic isolation. IEEE Trans Power Electron 22(6):2299–2306CrossRef
28.
Zurück zum Zitat Xu X, Khambadkone AM, Oruganti R (2007) A soft-switched back-to-back bi-directional dc/dc converter with a FPGA based digital control for automotive applications. In: IEEE conference of the industrial electronics society, IECON, pp 262–267 Xu X, Khambadkone AM, Oruganti R (2007) A soft-switched back-to-back bi-directional dc/dc converter with a FPGA based digital control for automotive applications. In: IEEE conference of the industrial electronics society, IECON, pp 262–267
29.
Zurück zum Zitat Morrison R, Egan M (1998) A new single transformer, power factor corrected UPS design. IEEE Trans Ind Appl 36(1):237–243 Morrison R, Egan M (1998) A new single transformer, power factor corrected UPS design. IEEE Trans Ind Appl 36(1):237–243
30.
Zurück zum Zitat Zhan X, Wu H, Xing Y, Ge H (2016). A high step-up bidirectional isolated dual-active-bridge converter with three-level voltage-doubler rectifier for energy storage applications. In: IEEE applied power electronics conference and exposition, pp 1424–1429 Zhan X, Wu H, Xing Y, Ge H (2016). A high step-up bidirectional isolated dual-active-bridge converter with three-level voltage-doubler rectifier for energy storage applications. In: IEEE applied power electronics conference and exposition, pp 1424–1429
31.
Zurück zum Zitat Pan X, Rathore AK (2013) Novel bidirectional snubberless soft-switching naturally clamped zero current commutated current-fed dual active bridge (CFDAB) converter for fuel cell vehicles. IEEE energy conversion congress and exposition, pp 1894–1901 Pan X, Rathore AK (2013) Novel bidirectional snubberless soft-switching naturally clamped zero current commutated current-fed dual active bridge (CFDAB) converter for fuel cell vehicles. IEEE energy conversion congress and exposition, pp 1894–1901
32.
Zurück zum Zitat Peng FZ, Li H, Su GJ, Lawler JS (2004) A new ZVS bidirectional dc–dc converter for fuel cell and battery application. IEEE Trans Power Electron 19(1):54–65CrossRef Peng FZ, Li H, Su GJ, Lawler JS (2004) A new ZVS bidirectional dc–dc converter for fuel cell and battery application. IEEE Trans Power Electron 19(1):54–65CrossRef
33.
Zurück zum Zitat Xiao H, Xie S (2008) A ZVS bidirectional dc–dc converter with phase-shift plus pwm control scheme. IEEE Trans Power Electron 23(2):813–823MathSciNetCrossRef Xiao H, Xie S (2008) A ZVS bidirectional dc–dc converter with phase-shift plus pwm control scheme. IEEE Trans Power Electron 23(2):813–823MathSciNetCrossRef
34.
Zurück zum Zitat Higa H, Itoh JI (2015) Derivation of operation mode for flying capacitor topology applied to three-level DAB converter. In: IEEE international future energy electronics conference, pp 1–6 Higa H, Itoh JI (2015) Derivation of operation mode for flying capacitor topology applied to three-level DAB converter. In: IEEE international future energy electronics conference, pp 1–6
35.
Zurück zum Zitat Inoue S, Akagi H (2007) A bidirectional dc–dc converter for an energy storage system with galvanic isolation. IEEE Trans Power Electron 22(6):2299–2306CrossRef Inoue S, Akagi H (2007) A bidirectional dc–dc converter for an energy storage system with galvanic isolation. IEEE Trans Power Electron 22(6):2299–2306CrossRef
36.
Zurück zum Zitat Costinett D, Maksimovic D, Zane R (2013) Design and control for high efficiency in high step-down dual active bridge converters operating at high switching frequency. IEEE Trans Power Electron 28(8):3931–3940CrossRef Costinett D, Maksimovic D, Zane R (2013) Design and control for high efficiency in high step-down dual active bridge converters operating at high switching frequency. IEEE Trans Power Electron 28(8):3931–3940CrossRef
37.
Zurück zum Zitat Zhang Z, Zhao H, Fu S, Shi J, He X (2016) Voltage and power balance control strategy for three-phase modular cascaded solid stated transformer. In: IEEE applied power electronics conference and exposition, pp 1475–1480 Zhang Z, Zhao H, Fu S, Shi J, He X (2016) Voltage and power balance control strategy for three-phase modular cascaded solid stated transformer. In: IEEE applied power electronics conference and exposition, pp 1475–1480
38.
Zurück zum Zitat Liu C, Sun P, Lai JS, Ji Y, Wang M, Chen CL et al (2012) Cascade dual-boost/buck active-front-end converter for intelligent universal transformer. IEEE Trans Ind Electron 59(12):4671–4680CrossRef Liu C, Sun P, Lai JS, Ji Y, Wang M, Chen CL et al (2012) Cascade dual-boost/buck active-front-end converter for intelligent universal transformer. IEEE Trans Ind Electron 59(12):4671–4680CrossRef
39.
Zurück zum Zitat Zhao B, Song Q, Li J, Liu W (2017) A modular multilevel dc-link front-to-front dc solid-state transformer based on high-frequency dual active phase shift for HVDC grid integration. IEEE Trans Ind Electron 64(11):8919–8927CrossRef Zhao B, Song Q, Li J, Liu W (2017) A modular multilevel dc-link front-to-front dc solid-state transformer based on high-frequency dual active phase shift for HVDC grid integration. IEEE Trans Ind Electron 64(11):8919–8927CrossRef
40.
Zurück zum Zitat Oggier GG, García GO, Oliva AR (2011) Modulation strategy to operate the dual active bridge dc–dc converter under soft switching in the whole operating range. IEEE Trans Power Electron 26(4):1228–1236CrossRef Oggier GG, García GO, Oliva AR (2011) Modulation strategy to operate the dual active bridge dc–dc converter under soft switching in the whole operating range. IEEE Trans Power Electron 26(4):1228–1236CrossRef
41.
Zurück zum Zitat Zhao B, Yu Q, Sun W (2012) Extended-phase-shift control of isolated bidirectional dc–dc converter for power distribution in microgrid. IEEE Trans Power Electron 27(11):4667–4680CrossRef Zhao B, Yu Q, Sun W (2012) Extended-phase-shift control of isolated bidirectional dc–dc converter for power distribution in microgrid. IEEE Trans Power Electron 27(11):4667–4680CrossRef
42.
Zurück zum Zitat Oggier GG, Ledhold R, Garcia, GO, Oliva, AR, Balda JC, Barlow F (2006) Extending the ZVS operating range of dual active bridge high-power dc–dc converters. In: IEEE xplore power electronics specialists conference (PESC), pp 1–7 Oggier GG, Ledhold R, Garcia, GO, Oliva, AR, Balda JC, Barlow F (2006) Extending the ZVS operating range of dual active bridge high-power dc–dc converters. In: IEEE xplore power electronics specialists conference (PESC), pp 1–7
43.
Zurück zum Zitat Demetriades GD, Nee HP (2008) Characterization of the dual-active bridge topology for high-power applications employing a duty-cycle modulation. In: IEEE power electronics specialists conference (PESC), pp 2791–2798 Demetriades GD, Nee HP (2008) Characterization of the dual-active bridge topology for high-power applications employing a duty-cycle modulation. In: IEEE power electronics specialists conference (PESC), pp 2791–2798
44.
Zurück zum Zitat Oggier GG, García GO, Oliva AR (2009) Switching control strategy to minimize dual active bridge converter losses. IEEE Trans Power Electron 24(7):1826–1838CrossRef Oggier GG, García GO, Oliva AR (2009) Switching control strategy to minimize dual active bridge converter losses. IEEE Trans Power Electron 24(7):1826–1838CrossRef
45.
Zurück zum Zitat Zhao B, Song Q, Liu W (2012) Power characterization of isolated bidirectional dual-active-bridge dc–dc converter with dual-phase-shift control. IEEE Trans Power Electron 27(9):4172–4176CrossRef Zhao B, Song Q, Liu W (2012) Power characterization of isolated bidirectional dual-active-bridge dc–dc converter with dual-phase-shift control. IEEE Trans Power Electron 27(9):4172–4176CrossRef
46.
Zurück zum Zitat Bai H, Nie Z, Mi CC (2010) Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dc–dc converters. IEEE Trans Power Electron 25(6):1444–1449CrossRef Bai H, Nie Z, Mi CC (2010) Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dc–dc converters. IEEE Trans Power Electron 25(6):1444–1449CrossRef
47.
Zurück zum Zitat Kim M, Rosekeit M, Sul SK, Doncker RWAAD (2011) A dual-phase-shift control strategy for dual-active-bridge dc–dc converter in wide voltage range. In: IEEE, international conference on power electronics and ECCE Asia, vol 10, pp 364–371 Kim M, Rosekeit M, Sul SK, Doncker RWAAD (2011) A dual-phase-shift control strategy for dual-active-bridge dc–dc converter in wide voltage range. In: IEEE, international conference on power electronics and ECCE Asia, vol 10, pp 364–371
48.
Zurück zum Zitat Zhao B, Song Q, Liu W, Sun W (2013) Current-stress-optimized switching strategy of isolated bidirectional dc–dc converter with dual-phase-shift control. IEEE Trans Ind Electron 60(10):4458–4467CrossRef Zhao B, Song Q, Liu W, Sun W (2013) Current-stress-optimized switching strategy of isolated bidirectional dc–dc converter with dual-phase-shift control. IEEE Trans Ind Electron 60(10):4458–4467CrossRef
49.
Zurück zum Zitat Zhao B, Song Q, Liu W (2013) Efficiency characterization and optimization of isolated bidirectional dc–dc converter based on dual-phase-shift control for dc distribution application. IEEE Trans Power Electron 28(4):1711–1727CrossRef Zhao B, Song Q, Liu W (2013) Efficiency characterization and optimization of isolated bidirectional dc–dc converter based on dual-phase-shift control for dc distribution application. IEEE Trans Power Electron 28(4):1711–1727CrossRef
50.
Zurück zum Zitat Bai H, Mi C (2008) Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc–dc converters using novel dual-phase-shift control. IEEE Trans Power Electron 23(6):2905–2914CrossRef Bai H, Mi C (2008) Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc–dc converters using novel dual-phase-shift control. IEEE Trans Power Electron 23(6):2905–2914CrossRef
51.
Zurück zum Zitat Krismer F, Kolar JW (2008) Accurate small-signal model for an automotive bidirectional dual active bridge converter. In: IEEE xplore the workshop on control and modeling for power electronics, pp 1–10 Krismer F, Kolar JW (2008) Accurate small-signal model for an automotive bidirectional dual active bridge converter. In: IEEE xplore the workshop on control and modeling for power electronics, pp 1–10
52.
Zurück zum Zitat Krismer F, Kolar JW (2012) Closed form solution for minimum conduction loss modulation of dab converters. IEEE Trans Power Electron 27(1):174–188CrossRef Krismer F, Kolar JW (2012) Closed form solution for minimum conduction loss modulation of dab converters. IEEE Trans Power Electron 27(1):174–188CrossRef
53.
Zurück zum Zitat Krismer F, Kolar JW (2012) Efficiency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans Ind Electron 59(7):2745–2760CrossRef Krismer F, Kolar JW (2012) Efficiency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans Ind Electron 59(7):2745–2760CrossRef
54.
Zurück zum Zitat Zhou H, Khambadkone AM (2009) Hybrid modulation for dual-active bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans Ind Appl 45(4):1434–1442CrossRef Zhou H, Khambadkone AM (2009) Hybrid modulation for dual-active bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans Ind Appl 45(4):1434–1442CrossRef
55.
Zurück zum Zitat Du Y, Lukic SM, Jacobson BS, Huang AQ (2012) Modulation technique to reverse power flow for the isolated series resonant dc–dc converter with clamped capacitor voltage. IEEE Trans Ind Electron 59(12):4617–4628CrossRef Du Y, Lukic SM, Jacobson BS, Huang AQ (2012) Modulation technique to reverse power flow for the isolated series resonant dc–dc converter with clamped capacitor voltage. IEEE Trans Ind Electron 59(12):4617–4628CrossRef
56.
Zurück zum Zitat Wu K, Silva CWD, Dunford WG (2012) Stability analysis of isolated bidirectional dual active full-bridge dc–dc converter with triple phase-shift control. IEEE Trans Power Electron 27(4):2007–2017CrossRef Wu K, Silva CWD, Dunford WG (2012) Stability analysis of isolated bidirectional dual active full-bridge dc–dc converter with triple phase-shift control. IEEE Trans Power Electron 27(4):2007–2017CrossRef
57.
Zurück zum Zitat Jain AK, Ayyanar R (2011) PWM control of dual active bridge: comprehensive analysis and experimental verification. IEEE Trans Power Electron 26(4):1215–1227CrossRef Jain AK, Ayyanar R (2011) PWM control of dual active bridge: comprehensive analysis and experimental verification. IEEE Trans Power Electron 26(4):1215–1227CrossRef
58.
Zurück zum Zitat Yoo H, Sul SK, Park Y, Jeong J (2008) System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE Trans Ind Appl 44(1):108–114CrossRef Yoo H, Sul SK, Park Y, Jeong J (2008) System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries. IEEE Trans Ind Appl 44(1):108–114CrossRef
59.
Zurück zum Zitat Falcones S, Ayyanar R, Mao X (2013) A dc–dc multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Trans Power Electron 28(5):2192–2203CrossRef Falcones S, Ayyanar R, Mao X (2013) A dc–dc multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Trans Power Electron 28(5):2192–2203CrossRef
60.
Zurück zum Zitat Xu D, Zhao C, Fan H (2004) A PWM plus phase-shift control bidirectional dc-dc converter. IEEE Trans Power Electron 19(3):666–675CrossRef Xu D, Zhao C, Fan H (2004) A PWM plus phase-shift control bidirectional dc-dc converter. IEEE Trans Power Electron 19(3):666–675CrossRef
61.
Zurück zum Zitat Xiao H, Xie S (2008) A ZVS bidirectional dc–dc converter with phase-shift plus PWM control scheme. IEEE Trans Power Electron 23(2):813–823MathSciNetCrossRef Xiao H, Xie S (2008) A ZVS bidirectional dc–dc converter with phase-shift plus PWM control scheme. IEEE Trans Power Electron 23(2):813–823MathSciNetCrossRef
62.
Zurück zum Zitat Li W, Wu H, Yu H, He X (2011) Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy. IEEE Trans Power Electron 26(12):3560–3570CrossRef Li W, Wu H, Yu H, He X (2011) Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy. IEEE Trans Power Electron 26(12):3560–3570CrossRef
63.
Zurück zum Zitat Shi Y, Li R, Xue Y, Li H (2015) Optimized operation of current-fed dual active bridge dc–dc converter for PV applications. IEEE Trans Ind Electron 62(11):6986–6995CrossRef Shi Y, Li R, Xue Y, Li H (2015) Optimized operation of current-fed dual active bridge dc–dc converter for PV applications. IEEE Trans Ind Electron 62(11):6986–6995CrossRef
64.
Zurück zum Zitat Sha D, You F, Wang X (2016) A high-efficiency current-fed semi-dual-active bridge dc–dc converter for low input voltage applications. IEEE Trans Ind Electron 63(4):2155–2164 Sha D, You F, Wang X (2016) A high-efficiency current-fed semi-dual-active bridge dc–dc converter for low input voltage applications. IEEE Trans Ind Electron 63(4):2155–2164
65.
Zurück zum Zitat Ding Z, Yang C, Zhang Z, Wang C, Xie S (2014) A novel soft-switching multiport bidirectional dc–dc converter for hybrid energy storage system. IEEE Trans Power Electron 29(4):1595–1609CrossRef Ding Z, Yang C, Zhang Z, Wang C, Xie S (2014) A novel soft-switching multiport bidirectional dc–dc converter for hybrid energy storage system. IEEE Trans Power Electron 29(4):1595–1609CrossRef
66.
Zurück zum Zitat Karshenas HR, Daneshpajooh, H, Safaee A, Bakhshai A, Jain P (2011). Basic families of medium-power soft-switched isolated bidirectional dc-dc converters. In: IEEE conference on power electronics, drive systems and technologies, pp 92–97 Karshenas HR, Daneshpajooh, H, Safaee A, Bakhshai A, Jain P (2011). Basic families of medium-power soft-switched isolated bidirectional dc-dc converters. In: IEEE conference on power electronics, drive systems and technologies, pp 92–97
67.
Zurück zum Zitat Guidi G, Kawamura A, Sasaki Y, Imakubo T (2011) Dual active bridge modulation with complete zero voltage switching taking resonant transitions into account. In: Proceedings of the 2011 14th European conference on power electronics and applications, pp 1–10 Guidi G, Kawamura A, Sasaki Y, Imakubo T (2011) Dual active bridge modulation with complete zero voltage switching taking resonant transitions into account. In: Proceedings of the 2011 14th European conference on power electronics and applications, pp 1–10
68.
Zurück zum Zitat Zhao B, Song Q, Liu W, Liu G, Zhao Y (2015) Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge dc-dc converter under pwm plus phase-shift control. IEEE Trans Power Electron 30(12):6488–6494CrossRef Zhao B, Song Q, Liu W, Liu G, Zhao Y (2015) Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge dc-dc converter under pwm plus phase-shift control. IEEE Trans Power Electron 30(12):6488–6494CrossRef
69.
Zurück zum Zitat Li X, Bhat AKS (2010) Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter. IEEE Trans Power Electron 25(4):850–862CrossRef Li X, Bhat AKS (2010) Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter. IEEE Trans Power Electron 25(4):850–862CrossRef
70.
Zurück zum Zitat Ibanez F, Echeverria JM, Fontan L (2013) Novel technique for bidirectional series-resonant dc/dc converter in discontinuous mode. IET Power Electron 6(5):1019–1028CrossRef Ibanez F, Echeverria JM, Fontan L (2013) Novel technique for bidirectional series-resonant dc/dc converter in discontinuous mode. IET Power Electron 6(5):1019–1028CrossRef
71.
Zurück zum Zitat Corradini L, Seltzer D, Bloomquist D, Zane R, Maksimović D, Jacobson B (2014) Zero voltage switching technique for bidirectional dc/dc converters. IEEE Trans Power Electron 29(4):1585–1594CrossRef Corradini L, Seltzer D, Bloomquist D, Zane R, Maksimović D, Jacobson B (2014) Zero voltage switching technique for bidirectional dc/dc converters. IEEE Trans Power Electron 29(4):1585–1594CrossRef
72.
Zurück zum Zitat Malan WL, Vilathgamuwa DM, Walker GR (2016) Modeling and control of a resonant dual active bridge with a tuned CLLC network. IEEE Trans Power Electron 31(10):7297–7310 Malan WL, Vilathgamuwa DM, Walker GR (2016) Modeling and control of a resonant dual active bridge with a tuned CLLC network. IEEE Trans Power Electron 31(10):7297–7310
73.
Zurück zum Zitat Agamy MS et al (2017) A high power medium voltage resonant dual active bridge for MVDC ship power networks. IEEE J Emerg Select Topics Power Electron 5(1):88–99CrossRef Agamy MS et al (2017) A high power medium voltage resonant dual active bridge for MVDC ship power networks. IEEE J Emerg Select Topics Power Electron 5(1):88–99CrossRef
74.
Zurück zum Zitat Muthuraj SS, Kanakesh VK, Das P, Panda SK (2017) Triple phase shift control of an LLL tank based bidirectional dual active bridge converter. IEEE Trans Power Electron 32(10):8035–8053CrossRef Muthuraj SS, Kanakesh VK, Das P, Panda SK (2017) Triple phase shift control of an LLL tank based bidirectional dual active bridge converter. IEEE Trans Power Electron 32(10):8035–8053CrossRef
75.
Zurück zum Zitat Yaqoob M, Loo KH, Lai YM (2016) A switched-inductor-augmented resonant DAB converter for achieving wide-range zero voltage switching. In: IEEE, international symposium on power electronics for distributed generation systems, pp 1–7 Yaqoob M, Loo KH, Lai YM (2016) A switched-inductor-augmented resonant DAB converter for achieving wide-range zero voltage switching. In: IEEE, international symposium on power electronics for distributed generation systems, pp 1–7
76.
Zurück zum Zitat Yaqoob M, Loo KH, Lai YM (2017) Extension of soft-switching region of dual-active-bridge converter by a tunable resonant tank. IEEE Trans Power Electron 32(12):9093–9104CrossRef Yaqoob M, Loo KH, Lai YM (2017) Extension of soft-switching region of dual-active-bridge converter by a tunable resonant tank. IEEE Trans Power Electron 32(12):9093–9104CrossRef
77.
Zurück zum Zitat Tripathi AK, Mainali K, Madhusoodhanan S, Kadavelugu A, Vechalapu K, Patel DC et al (2017) A novel ZVS range enhancement technique of a high-voltage dual active bridge converter using series injection. IEEE Trans Power Electron 32(6):4231–4245CrossRef Tripathi AK, Mainali K, Madhusoodhanan S, Kadavelugu A, Vechalapu K, Patel DC et al (2017) A novel ZVS range enhancement technique of a high-voltage dual active bridge converter using series injection. IEEE Trans Power Electron 32(6):4231–4245CrossRef
78.
Zurück zum Zitat Harrye YA, Ahmed KH, Aboushady AA (2014) Reactive power minimization of dual active bridge dc/dc converter with triple phase shift control using neural network. In: IEEE international conference on renewable energy research and application, pp 566–571 Harrye YA, Ahmed KH, Aboushady AA (2014) Reactive power minimization of dual active bridge dc/dc converter with triple phase shift control using neural network. In: IEEE international conference on renewable energy research and application, pp 566–571
79.
Zurück zum Zitat Wen H, Xiao W, Su B (2014) Nonactive power loss minimization in a bidirectional isolated dc–dc converter for distributed power systems. IEEE Trans Ind Electron 61(12):6822–6831CrossRef Wen H, Xiao W, Su B (2014) Nonactive power loss minimization in a bidirectional isolated dc–dc converter for distributed power systems. IEEE Trans Ind Electron 61(12):6822–6831CrossRef
80.
Zurück zum Zitat Huang J, Wang Y, Li Z, Lei W (2016) Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional dc–dc converter. IEEE Trans Industr Electron 63(7):4169–4179CrossRef Huang J, Wang Y, Li Z, Lei W (2016) Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional dc–dc converter. IEEE Trans Industr Electron 63(7):4169–4179CrossRef
81.
Zurück zum Zitat Hou N, Song W, Wu M (2016) Minimum-current-stress scheme of dual active bridge dc–dc converter with unified phase-shift control. IEEE Trans Power Electron 31(12):8552–8561 Hou N, Song W, Wu M (2016) Minimum-current-stress scheme of dual active bridge dc–dc converter with unified phase-shift control. IEEE Trans Power Electron 31(12):8552–8561
82.
Zurück zum Zitat Schibli N (1999) DC–DC converters for two-quadrant operation with controlled output voltage. In: EPE 1999: European conference on power electronics and applications Schibli N (1999) DC–DC converters for two-quadrant operation with controlled output voltage. In: EPE 1999: European conference on power electronics and applications
83.
Zurück zum Zitat Hirose T, Takasaki M, Ishizuka Y (2013) A power efficiency improvement technique for a bidirectional dual active bridge dc–dc converter at light load. IEEE Trans Ind Appl 50(6):4047–4055CrossRef Hirose T, Takasaki M, Ishizuka Y (2013) A power efficiency improvement technique for a bidirectional dual active bridge dc–dc converter at light load. IEEE Trans Ind Appl 50(6):4047–4055CrossRef
84.
Zurück zum Zitat Zhou H, Khambadkone AM (2009) Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans Ind Appl 45(4):1434–1442CrossRef Zhou H, Khambadkone AM (2009) Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans Ind Appl 45(4):1434–1442CrossRef
85.
Zurück zum Zitat Krismer F, Round S, Kolar JW (2006) Performance optimization of a high current dual active bridge with a wide operating voltage range. In: IEEE power electronics specialists conference (PESC), pp 1–7 Krismer F, Round S, Kolar JW (2006) Performance optimization of a high current dual active bridge with a wide operating voltage range. In: IEEE power electronics specialists conference (PESC), pp 1–7
86.
Zurück zum Zitat Choi W, Rho KM, Cho BH (2016) Fundamental duty modulation of dual-active-bridge converter for wide-range operation. IEEE Trans Power Electron 31(6):4048–4064CrossRef Choi W, Rho KM, Cho BH (2016) Fundamental duty modulation of dual-active-bridge converter for wide-range operation. IEEE Trans Power Electron 31(6):4048–4064CrossRef
87.
Zurück zum Zitat Shen Y, Sun X, Li W, Wu X, Wang B (2016) A modified dual active bridge converter with hybrid phase-shift control for wide input voltage range. IEEE Trans Power Electron 31(10):6884–6900 Shen Y, Sun X, Li W, Wu X, Wang B (2016) A modified dual active bridge converter with hybrid phase-shift control for wide input voltage range. IEEE Trans Power Electron 31(10):6884–6900
Metadaten
Titel
Introduction
verfasst von
Deshang Sha
Guo Xu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-0259-6_1