Skip to main content
Erschienen in:
Buchtitelbild

2010 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Marat Akhmet

Erschienen in: Principles of Discontinuous Dynamical Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, many mathematicians agree that discontinuity as well as continuity should be considered when one seeks to describe the real world more adequately. The idea that, besides continuity, discontinuity is a property of motion is as old as the idea of motion itself. This understanding was strong in ancient Greece. For example, it was expressed in paradoxes of Zeno. Invention of calculus by Newton and Leibniz in its last form, and the development of the analysis adjunct to celestial mechanics, which was stimulating for the founders of the theory of dynamical systems, took us away from the concept of discontinuity. The domination of continuous dynamics, and also smooth dynamics, has been apparent for a long time. However, the application of differential equations in mechanics, electronics, biology, neural networks, medicine, and social sciences often necessitates the introduction of discontinuity, as either abrupt interruptions of an elsewhere continuous process (impulsive differential equations) or in the form of discrete time setting (difference equations). If difference equations may be considered as an instrument of investigation of continuous motion through, for example, Poincaré maps, impulsive differential equations seem appropriate for modeling motions where continuous changes are mixed with impact type changes in equal proportion. Recently, it is becoming clear that to discuss real world systems that (1) exist for a long period of time, or (2) are multidimensional, with a large number of dependent variables, researchers resort to differential equations with: (1) discontinuous trajectories (impulsive differential equations); (2) switching in the right-hand side (differential equations with discontinuous right-hand side); (3) some coordinates ruled by discrete equations (hybrid systems); (4) disconnected domains of existence of solutions (time scale differential equations), where these properties may be combined in a single model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat M.U. Akhmet, On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 288 (2003) 182–196.MATHMathSciNetCrossRef M.U. Akhmet, On the general problem of stability for impulsive differential equations, J. Math. Anal. Appl., 288 (2003) 182–196.MATHMathSciNetCrossRef
3.
Zurück zum Zitat M.U. Akhmet, On the smoothness of solutions of impulsive autonomous systems, Nonlinear Anal.: TMA, 60 (2005a) 311–324.MATHMathSciNet M.U. Akhmet, On the smoothness of solutions of impulsive autonomous systems, Nonlinear Anal.: TMA, 60 (2005a) 311–324.MATHMathSciNet
4.
Zurück zum Zitat M.U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system, Nonlinear Anal.: TMA, 60 (2005b) 163–178.MATHMathSciNet M.U. Akhmet, Perturbations and Hopf bifurcation of the planar discontinuous dynamical system, Nonlinear Anal.: TMA, 60 (2005b) 163–178.MATHMathSciNet
5.
Zurück zum Zitat M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.: TMA, 66 (2007a) 367–383.MATHMathSciNetCrossRef M.U. Akhmet, Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.: TMA, 66 (2007a) 367–383.MATHMathSciNetCrossRef
6.
Zurück zum Zitat M.U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. Appl., 336 (2007b) 646–663.MATHMathSciNetCrossRef M.U. Akhmet, On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. Appl., 336 (2007b) 646–663.MATHMathSciNetCrossRef
7.
Zurück zum Zitat M.U. Akhmet, Almost periodic solutions of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.: HS, 2 (2008) 456-467.MATHMathSciNetCrossRef M.U. Akhmet, Almost periodic solutions of differential equations with piecewise constant argument of generalized type, Nonlinear Anal.: HS, 2 (2008) 456-467.MATHMathSciNetCrossRef
10.
Zurück zum Zitat M.U. Akhmet, Dynamical synthesis of quasi-minimal sets, Int. J. Bifurcation Chaos, 19, no. 7 (2009c) 1–5. M.U. Akhmet, Dynamical synthesis of quasi-minimal sets, Int. J. Bifurcation Chaos, 19, no. 7 (2009c) 1–5.
11.
Zurück zum Zitat M.U. Akhmet, Shadowing and dynamical synthesis, Int. J. Bifurcation Chaos, Int. J. Bifurcation Chaos, 19, no. 10 (2009d) 1–8. M.U. Akhmet, Shadowing and dynamical synthesis, Int. J. Bifurcation Chaos, Int. J. Bifurcation Chaos, 19, no. 10 (2009d) 1–8.
13.
Zurück zum Zitat M.U. Akhmet, D. Arugaslan, Bifurcation of a non-smooth planar limit cycle from a vertex, Nonlinear Anal.: TMA, 71 (2009) e2723–e2733.MathSciNetCrossRef M.U. Akhmet, D. Arugaslan, Bifurcation of a non-smooth planar limit cycle from a vertex, Nonlinear Anal.: TMA, 71 (2009) e2723–e2733.MathSciNetCrossRef
14.
Zurück zum Zitat M.U. Akhmet, D. Arugaslan, M. Beklioglu, Impulsive control of the population dynamics, Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology, August 1–5, 2005, Melbourne, Florida, Editors: R.P. Agarval and K. Perera, Hindawi Publishing Corporation, 2006, 21–30. M.U. Akhmet, D. Arugaslan, M. Beklioglu, Impulsive control of the population dynamics, Proceedings of the Conference on Differential and Difference Equations at the Florida Institute of Technology, August 1–5, 2005, Melbourne, Florida, Editors: R.P. Agarval and K. Perera, Hindawi Publishing Corporation, 2006, 21–30.
15.
Zurück zum Zitat M.U. Akhmet, D. Arugaslan, M. Turan, Hopf bifurcation for a 3D Filippov system, Dyn. Contin. Discrete Impuls. Syst., Ser. A, 16 (2009) 759–775.MATHMathSciNet M.U. Akhmet, D. Arugaslan, M. Turan, Hopf bifurcation for a 3D Filippov system, Dyn. Contin. Discrete Impuls. Syst., Ser. A, 16 (2009) 759–775.MATHMathSciNet
16.
Zurück zum Zitat M.U. Akhmet, G.A. Bekmukhambetova, A prototype compartmental model of the blood pressure distribution, Nonlinear Anal.: RWA, 11 (2010), 1249–1257.MATHMathSciNetCrossRef M.U. Akhmet, G.A. Bekmukhambetova, A prototype compartmental model of the blood pressure distribution, Nonlinear Anal.: RWA, 11 (2010), 1249–1257.MATHMathSciNetCrossRef
17.
Zurück zum Zitat M.U. Akhmet, C. Buyukadali, Differential equations with a state-dependent piecewise constant argument, Nonlinear Analysis: TMA, 72 (2010), 4200–4211.MATHMathSciNetCrossRef M.U. Akhmet, C. Buyukadali, Differential equations with a state-dependent piecewise constant argument, Nonlinear Analysis: TMA, 72 (2010), 4200–4211.MATHMathSciNetCrossRef
19.
Zurück zum Zitat M.U. Akhmet, M. Turan, The differential equations on time scales through impulsive differential equations, Nonlinear Anal.: TMA, 65 (2006) 2043–2060.MATHMathSciNetCrossRef M.U. Akhmet, M. Turan, The differential equations on time scales through impulsive differential equations, Nonlinear Anal.: TMA, 65 (2006) 2043–2060.MATHMathSciNetCrossRef
20.
25.
Zurück zum Zitat M.U. Akhmetov, Asymptotic representation of solutions of regularly perturbed systems of differential equations with a non classical right-hand side. Ukrainian Math. J., 43 (1991c) 1298–1304.MATHMathSciNet M.U. Akhmetov, Asymptotic representation of solutions of regularly perturbed systems of differential equations with a non classical right-hand side. Ukrainian Math. J., 43 (1991c) 1298–1304.MATHMathSciNet
26.
Zurück zum Zitat M.U. Akhmetov, Periodic solutions of systems of differential equations with a non classical right-hand side containing a small parameter (russian), TIC: Collection: asymptotic solutions of non linear equations with small parameter. 1991d, 11–15. UBL: Akad. Nauk Ukr. SSR, Inst. Mat., Kiev. M.U. Akhmetov, Periodic solutions of systems of differential equations with a non classical right-hand side containing a small parameter (russian), TIC: Collection: asymptotic solutions of non linear equations with small parameter. 1991d, 11–15. UBL: Akad. Nauk Ukr. SSR, Inst. Mat., Kiev.
27.
Zurück zum Zitat M.U. Akhmetov, On the smoothness of solutions of differential equations with a discontinuous right-hand side, Ukrainian Math. J., 45 (1993) 1785–1792.MathSciNetCrossRef M.U. Akhmetov, On the smoothness of solutions of differential equations with a discontinuous right-hand side, Ukrainian Math. J., 45 (1993) 1785–1792.MathSciNetCrossRef
28.
Zurück zum Zitat M.U. Akhmetov, On the method of successive approximations for systems of differential equations with impulse action at nonfixed moments of time (russian), Izv. Minist. Nauki Vyssh. Obraz. Resp. Kaz. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat. (1999) no. 1, 11–18. M.U. Akhmetov, On the method of successive approximations for systems of differential equations with impulse action at nonfixed moments of time (russian), Izv. Minist. Nauki Vyssh. Obraz. Resp. Kaz. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat. (1999) no. 1, 11–18.
29.
Zurück zum Zitat M.U. Akhmetov, R.F. Nagaev, Periodic solutions of a nonlinear impulse system in a neighborhood of a generating family of quasiperiodic solutions, Differ. Equ., 36 (2000) 799–806.MATHMathSciNetCrossRef M.U. Akhmetov, R.F. Nagaev, Periodic solutions of a nonlinear impulse system in a neighborhood of a generating family of quasiperiodic solutions, Differ. Equ., 36 (2000) 799–806.MATHMathSciNetCrossRef
30.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, On the almost periodic solutions of a class of systems with impulse effect (russian), Ukr. Mat. Zh., 36 (1984) 486–490.MathSciNet M.U. Akhmetov, N.A. Perestyuk, On the almost periodic solutions of a class of systems with impulse effect (russian), Ukr. Mat. Zh., 36 (1984) 486–490.MathSciNet
31.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, Almost periodic solutions of sampled-data systems. Ukr. Mat. Zh. (russian), 39 (1987) 74–80.MATHMathSciNet M.U. Akhmetov, N.A. Perestyuk, Almost periodic solutions of sampled-data systems. Ukr. Mat. Zh. (russian), 39 (1987) 74–80.MATHMathSciNet
32.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, On motion with impulse actions on a surfaces (russian), Izv.-Acad. Nauk Kaz. SSR, Ser. Fiz.-Mat., 1 (1988) 111–114. M.U. Akhmetov, N.A. Perestyuk, On motion with impulse actions on a surfaces (russian), Izv.-Acad. Nauk Kaz. SSR, Ser. Fiz.-Mat., 1 (1988) 111–114.
33.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, The comparison method for differential equations with impulse action, Differ. Equ., 26 (1990) 1079–1086.MATHMathSciNet M.U. Akhmetov, N.A. Perestyuk, The comparison method for differential equations with impulse action, Differ. Equ., 26 (1990) 1079–1086.MATHMathSciNet
34.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, Asymptotic representation of solutions of regularly perturbed systems of differential equations with a non-classical right-hand side, Ukrainian Math. J., 43 (1991) 1209–1214.MATHMathSciNetCrossRef M.U. Akhmetov, N.A. Perestyuk, Asymptotic representation of solutions of regularly perturbed systems of differential equations with a non-classical right-hand side, Ukrainian Math. J., 43 (1991) 1209–1214.MATHMathSciNetCrossRef
35.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, Differential properties of solutions and integral surfaces of nonlinear impulse systems, Differ. Equ., 28 (1992a) 445–453.MathSciNet M.U. Akhmetov, N.A. Perestyuk, Differential properties of solutions and integral surfaces of nonlinear impulse systems, Differ. Equ., 28 (1992a) 445–453.MathSciNet
36.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, Periodic and almost periodic solutions of strongly nonlinear impulse systems, J. Appl. Math. Mech., 56 (1992b) 829–837.MathSciNetCrossRef M.U. Akhmetov, N.A. Perestyuk, Periodic and almost periodic solutions of strongly nonlinear impulse systems, J. Appl. Math. Mech., 56 (1992b) 829–837.MathSciNetCrossRef
37.
Zurück zum Zitat M.U. Akhmetov, N.A. Perestyuk, On a comparison method for pulse systems in the space \({\mathbb{R}}^{n},\) Ukr. Math. J. 45 (1993) 826–836.MATHMathSciNet M.U. Akhmetov, N.A. Perestyuk, On a comparison method for pulse systems in the space \({\mathbb{R}}^{n},\) Ukr. Math. J. 45 (1993) 826–836.MATHMathSciNet
38.
Zurück zum Zitat A.A. Andronov, A.A. Vitt, C.E. Khaikin, Theory of oscillations, Pergamon, Oxford, 1966. A.A. Andronov, A.A. Vitt, C.E. Khaikin, Theory of oscillations, Pergamon, Oxford, 1966.
41.
Zurück zum Zitat J. Awrejcewicz, C.H. Lamarque, Bifurcation and chaos in nonsmooth mechanical systems, World Scientific, Singapore, 2003.MATH J. Awrejcewicz, C.H. Lamarque, Bifurcation and chaos in nonsmooth mechanical systems, World Scientific, Singapore, 2003.MATH
43.
Zurück zum Zitat V.I. Babitsky, Theory of vibro-impact systems and applications, Springer, Berlin, 1998.MATH V.I. Babitsky, Theory of vibro-impact systems and applications, Springer, Berlin, 1998.MATH
48.
Zurück zum Zitat N.N. Bautin, E.A. Leontovich, Methods and rules for the qualitative study of dynamical systems on the plane (russian), Nauka, Moscow, 1990. N.N. Bautin, E.A. Leontovich, Methods and rules for the qualitative study of dynamical systems on the plane (russian), Nauka, Moscow, 1990.
50.
Zurück zum Zitat M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems, Springer, London, 2008a.MATH M. di Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems, Springer, London, 2008a.MATH
51.
Zurück zum Zitat M. di Bernardo, A. Nordmark, G. Olivar, Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems, Phys. D, 237 (2008b) 119–136.MATHMathSciNetCrossRef M. di Bernardo, A. Nordmark, G. Olivar, Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems, Phys. D, 237 (2008b) 119–136.MATHMathSciNetCrossRef
52.
Zurück zum Zitat R. Bellman, Mathematical methods in medicine, World Scientific, Singapore, 1983.MATH R. Bellman, Mathematical methods in medicine, World Scientific, Singapore, 1983.MATH
53.
Zurück zum Zitat I.I. Blekhman, Synchronization of dynamical systems (russian), Nauka, Moscow, 1971. I.I. Blekhman, Synchronization of dynamical systems (russian), Nauka, Moscow, 1971.
56.
Zurück zum Zitat B. Brogliato, Nonsmooth impact mechanics, Springer, London, 1996.MATH B. Brogliato, Nonsmooth impact mechanics, Springer, London, 1996.MATH
57.
Zurück zum Zitat B. Brogliato, Impacts in mechanical systems – Analysis and modeling, Springer, New York, 2000.CrossRef B. Brogliato, Impacts in mechanical systems – Analysis and modeling, Springer, New York, 2000.CrossRef
65.
Zurück zum Zitat A. Domoshnitsky, M. Drakhlin, E. Litsyn, Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments, J. Diff. Eqs., 228 (2006) 39–48.MATHMathSciNetCrossRef A. Domoshnitsky, M. Drakhlin, E. Litsyn, Nonoscillation and positivity of solutions to first order state-dependent differential equations with impulses in variable moments, J. Diff. Eqs., 228 (2006) 39–48.MATHMathSciNetCrossRef
66.
Zurück zum Zitat M. Feckan, Bifurcation of periodic and chaotic solutions in discontinuous systems. Arch. Math. (Brno), 34 (1998) 73–82.MATHMathSciNet M. Feckan, Bifurcation of periodic and chaotic solutions in discontinuous systems. Arch. Math. (Brno), 34 (1998) 73–82.MATHMathSciNet
67.
Zurück zum Zitat M.I. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise continuous systems (Russian), J. Appl. Math. Mech., 38 (1974) 810–818.CrossRef M.I. Feigin, Doubling of the oscillation period with C-bifurcations in piecewise continuous systems (Russian), J. Appl. Math. Mech., 38 (1974) 810–818.CrossRef
68.
Zurück zum Zitat A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer, Dordrecht, 1988.MATH A.F. Filippov, Differential equations with discontinuous right-hand sides, Kluwer, Dordrecht, 1988.MATH
69.
70.
71.
Zurück zum Zitat J. Guckenheimer, P.J. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New-York, 1083. J. Guckenheimer, P.J. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New-York, 1083.
75.
Zurück zum Zitat A. Halanay, D. Wexler, Qualitative theory of impulsive systems (romanian), Edit. Acad. RPR, Bucuresti, 1968. A. Halanay, D. Wexler, Qualitative theory of impulsive systems (romanian), Edit. Acad. RPR, Bucuresti, 1968.
79.
Zurück zum Zitat P.J. Holmes, The dynamics of repeated impacts with a sinusoidal vibrating table, J. Sound Vib., 84 (1982) 173–189.MATH P.J. Holmes, The dynamics of repeated impacts with a sinusoidal vibrating table, J. Sound Vib., 84 (1982) 173–189.MATH
85.
Zurück zum Zitat Qi Jiangang, Fu Xilin, Existence of limit cycles of impulsive differential equations with impulses at variable times. Nonlinear Anal.: TMA, 44 (2001) 345–353.MATHCrossRef Qi Jiangang, Fu Xilin, Existence of limit cycles of impulsive differential equations with impulses at variable times. Nonlinear Anal.: TMA, 44 (2001) 345–353.MATHCrossRef
86.
Zurück zum Zitat A. Katok, J.-M. Strelcyn, F. Ledrappier, F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, 1222, Springer, Berlin, 1986. A. Katok, J.-M. Strelcyn, F. Ledrappier, F. Przytycki, Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, 1222, Springer, Berlin, 1986.
89.
Zurück zum Zitat A.E. Kobrinskii, A.A. Kobrinskii, Vibro-shock systems (russian), Nauka, Moscow, 1971. A.E. Kobrinskii, A.A. Kobrinskii, Vibro-shock systems (russian), Nauka, Moscow, 1971.
91.
Zurück zum Zitat N.M. Krylov, N.N. Bogolyubov, Introduction to nonlinear mechanics, Acad. Nauk Ukrainy, Kiev, 1937. N.M. Krylov, N.N. Bogolyubov, Introduction to nonlinear mechanics, Acad. Nauk Ukrainy, Kiev, 1937.
92.
Zurück zum Zitat M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, Vol. 1744, Springer, Berlin, 2000.CrossRef M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, Vol. 1744, Springer, Berlin, 2000.CrossRef
93.
Zurück zum Zitat M. Kunze, T. Küpper, Qualitative bifurcation analysis of a non-smooth friction-oscillator model, Z. Angew. Math. Phys., 48 (1997) 87–101.MATHMathSciNetCrossRef M. Kunze, T. Küpper, Qualitative bifurcation analysis of a non-smooth friction-oscillator model, Z. Angew. Math. Phys., 48 (1997) 87–101.MATHMathSciNetCrossRef
95.
Zurück zum Zitat V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, NJ, London, Hong Kong, 1989.MATHCrossRef V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, NJ, London, Hong Kong, 1989.MATHCrossRef
96.
Zurück zum Zitat V. Lakshmikantham, S. Leela, S. Kaul, Comparison principle for impulsive differential equations with variable times and Stability theory, Nonlinear Anal.: TMA, 22 (1994) 499–503.MATHMathSciNetCrossRef V. Lakshmikantham, S. Leela, S. Kaul, Comparison principle for impulsive differential equations with variable times and Stability theory, Nonlinear Anal.: TMA, 22 (1994) 499–503.MATHMathSciNetCrossRef
97.
Zurück zum Zitat V. Lakshmikantham, X. Liu, On quasistability for impulsive differential equations, Nonlinear Anal.: TMA, 13 (1989) 819–828.MATHMathSciNetCrossRef V. Lakshmikantham, X. Liu, On quasistability for impulsive differential equations, Nonlinear Anal.: TMA, 13 (1989) 819–828.MATHMathSciNetCrossRef
99.
Zurück zum Zitat W. Lin, R. Jiong, Chaotic dynamics of an integrate-and-fire circuit with periodic pulse-train input., IEEE Trans. Circuits Syst. I Fund. Theory Appl., 50 (2003) 686–693.CrossRef W. Lin, R. Jiong, Chaotic dynamics of an integrate-and-fire circuit with periodic pulse-train input., IEEE Trans. Circuits Syst. I Fund. Theory Appl., 50 (2003) 686–693.CrossRef
100.
Zurück zum Zitat W. Lin, Description of complex dynamics in a class if impulsive differential equations, Chaos, Solutions and Fractals, 25 (2005) 1007–1017.MATHCrossRef W. Lin, Description of complex dynamics in a class if impulsive differential equations, Chaos, Solutions and Fractals, 25 (2005) 1007–1017.MATHCrossRef
101.
Zurück zum Zitat L. Liu, J. Sun, Existence of periodic solution for a harvested system with impulses at variable times, Phys. Lett. A, 360 (2006) 105–108.MATHCrossRef L. Liu, J. Sun, Existence of periodic solution for a harvested system with impulses at variable times, Phys. Lett. A, 360 (2006) 105–108.MATHCrossRef
103.
Zurück zum Zitat A.C.J. Luo, Global transversality, resonance and chaotic dynamics, World Scientific, Hackensack, NJ, 2008.MATHCrossRef A.C.J. Luo, Global transversality, resonance and chaotic dynamics, World Scientific, Hackensack, NJ, 2008.MATHCrossRef
107.
Zurück zum Zitat N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Company, Inc. Princeton, London, New York, 1962.MATH N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Company, Inc. Princeton, London, New York, 1962.MATH
108.
Zurück zum Zitat R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990) 1645–1662.MATHMathSciNetCrossRef R.E. Mirollo, S.H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990) 1645–1662.MATHMathSciNetCrossRef
109.
Zurück zum Zitat E. Mosekilde, Zh. Zhusubalyev, Bifurcations and chaos in piecewise-smooth dynamical systems, World Scientific, River Edge, NJ, 2003.MATH E. Mosekilde, Zh. Zhusubalyev, Bifurcations and chaos in piecewise-smooth dynamical systems, World Scientific, River Edge, NJ, 2003.MATH
110.
Zurück zum Zitat A.D. Myshkis, On asymptotic stability of the rough stationary points of the discontinuous dynamic systems on plane, Autom. Remote Contrl., 62 (2001) 1428–1432.MATHMathSciNetCrossRef A.D. Myshkis, On asymptotic stability of the rough stationary points of the discontinuous dynamic systems on plane, Autom. Remote Contrl., 62 (2001) 1428–1432.MATHMathSciNetCrossRef
111.
Zurück zum Zitat A.D. Myshkis, A.M. Samoilenko, Systems with impulses at fixed moments of time (russian), Math. Sb., 74 (1967) 202–208. A.D. Myshkis, A.M. Samoilenko, Systems with impulses at fixed moments of time (russian), Math. Sb., 74 (1967) 202–208.
115.
Zurück zum Zitat R.F. Nagaev, D.G. Rubisov, Impulse motions in a one-dimensional system in a gravitational force field, Soviet Appl. Mech., 26 (1990) 885–890.MATHMathSciNetCrossRef R.F. Nagaev, D.G. Rubisov, Impulse motions in a one-dimensional system in a gravitational force field, Soviet Appl. Mech., 26 (1990) 885–890.MATHMathSciNetCrossRef
118.
Zurück zum Zitat A.B. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001) 1517–1542.MATHMathSciNetCrossRef A.B. Nordmark, Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators, Nonlinearity, 14 (2001) 1517–1542.MATHMathSciNetCrossRef
119.
Zurück zum Zitat H.E. Nusse, E. Ott, J.A. Yorke, Border-collision bifurcations: an explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994) 1073–1076.MathSciNetCrossRef H.E. Nusse, E. Ott, J.A. Yorke, Border-collision bifurcations: an explanation for observed bifurcation phenomena, Phys. Rev. E, 49 (1994) 1073–1076.MathSciNetCrossRef
120.
Zurück zum Zitat H.E. Nusse, J.A. Yorke, Is Every Approximate Trajectory of Some Process Near an Exact Trajectory of a Nearby Process? Commun. Math. Phys., 114 (1988) 363–379.MATHMathSciNetCrossRef H.E. Nusse, J.A. Yorke, Is Every Approximate Trajectory of Some Process Near an Exact Trajectory of a Nearby Process? Commun. Math. Phys., 114 (1988) 363–379.MATHMathSciNetCrossRef
121.
Zurück zum Zitat M. Oestreich, N. Hinrichs, K. Popp, C.J. Budd, Analytical and experimental investigation of an impact oscillator. Proceedings of the ASME 16th Biennal Conf. on Mech. Vibr. and Noise, DETC97VIB-3907: 1–11, 1997. M. Oestreich, N. Hinrichs, K. Popp, C.J. Budd, Analytical and experimental investigation of an impact oscillator. Proceedings of the ASME 16th Biennal Conf. on Mech. Vibr. and Noise, DETC97VIB-3907: 1–11, 1997.
122.
Zurück zum Zitat K. Palmer, Shadowing in dynamical systems: Theory and Applications, Kluwer, Dordrecht, 2000.MATHCrossRef K. Palmer, Shadowing in dynamical systems: Theory and Applications, Kluwer, Dordrecht, 2000.MATHCrossRef
123.
Zurück zum Zitat T. Pavlidis, A new model for simple neural nets and its application in the design of a neural oscillator, Bull. Math. Biophys., 27 (1965) 215–229.MATHMathSciNetCrossRef T. Pavlidis, A new model for simple neural nets and its application in the design of a neural oscillator, Bull. Math. Biophys., 27 (1965) 215–229.MATHMathSciNetCrossRef
125.
Zurück zum Zitat F. Peterka, Part I: Theoretical analysis of n-multiple (1 ∕ n)-impact solutions, CSAV Acta Technica, 26 (1974) 462–473. F. Peterka, Part I: Theoretical analysis of n-multiple (1 ∕ n)-impact solutions, CSAV Acta Technica, 26 (1974) 462–473.
126.
Zurück zum Zitat F. Pfeiffer, Multibody systems with unilateral constraints (russian), J. Appl. Math. Mech., 65 (2001) 665–670.MathSciNetCrossRef F. Pfeiffer, Multibody systems with unilateral constraints (russian), J. Appl. Math. Mech., 65 (2001) 665–670.MathSciNetCrossRef
127.
Zurück zum Zitat F. Pfeiffer, Chr. Glocker, Multibody dynamics with unilateral contacts. Wiley, New York, 1996.MATHCrossRef F. Pfeiffer, Chr. Glocker, Multibody dynamics with unilateral contacts. Wiley, New York, 1996.MATHCrossRef
130.
Zurück zum Zitat V.N. Pilipchuk, R.A. Ibrahim, Dynamics of a two-pendulum model with impact interaction and an elastic support, Nonlinear Dynam., 21 (2000) 221–247.MATHMathSciNetCrossRef V.N. Pilipchuk, R.A. Ibrahim, Dynamics of a two-pendulum model with impact interaction and an elastic support, Nonlinear Dynam., 21 (2000) 221–247.MATHMathSciNetCrossRef
133.
Zurück zum Zitat L.D. Pustylnikov, Stable and oscillating motions in non-autonomous dynamical systems, Trans. Math. Soc., 14 (1978) 1–10. L.D. Pustylnikov, Stable and oscillating motions in non-autonomous dynamical systems, Trans. Math. Soc., 14 (1978) 1–10.
135.
Zurück zum Zitat V.F. Rozhko, Lyapunov stability in discontinuous dynamic systems, (russian), Diff. Eqs., 11 (1975) 761–766.MATH V.F. Rozhko, Lyapunov stability in discontinuous dynamic systems, (russian), Diff. Eqs., 11 (1975) 761–766.MATH
136.
Zurück zum Zitat V.F. Rozhko, On a class of almost periodic motions in systems with shocks (russian), Diff. Eqs., 11 (1972) 2012–2022. V.F. Rozhko, On a class of almost periodic motions in systems with shocks (russian), Diff. Eqs., 11 (1972) 2012–2022.
137.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, Second N.N. Bogolyubov’s theorem for impulsive differential equations (russian), Differentsial’nye uravneniya, 10 (1974) 2001–2010. A.M. Samoilenko, N.A. Perestyuk, Second N.N. Bogolyubov’s theorem for impulsive differential equations (russian), Differentsial’nye uravneniya, 10 (1974) 2001–2010.
138.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, Stability of solutions of impulsive differential equations (russian), Differentsial’nye uravneniya, 13 (1977) 1981–1992. A.M. Samoilenko, N.A. Perestyuk, Stability of solutions of impulsive differential equations (russian), Differentsial’nye uravneniya, 13 (1977) 1981–1992.
139.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, Periodic solutions of weakly nonlinear impulsive differential equations (russian), Differentsial’nye uravneniya, 14 (1978) 1034–1045. A.M. Samoilenko, N.A. Perestyuk, Periodic solutions of weakly nonlinear impulsive differential equations (russian), Differentsial’nye uravneniya, 14 (1978) 1034–1045.
140.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, On stability of solutions of impulsive systems (russian), Differentsial’nye uravneniya, 17 (1981) 1995–2002.MathSciNet A.M. Samoilenko, N.A. Perestyuk, On stability of solutions of impulsive systems (russian), Differentsial’nye uravneniya, 17 (1981) 1995–2002.MathSciNet
141.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, Differential Equations with impulsive actions (russian), Vishcha Shkola, Kiev, 1987. A.M. Samoilenko, N.A. Perestyuk, Differential Equations with impulsive actions (russian), Vishcha Shkola, Kiev, 1987.
142.
Zurück zum Zitat A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.MATH A.M. Samoilenko, N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.MATH
144.
Zurück zum Zitat S.W. Shaw, P.J. Holmes, Periodically forced linear oscillator with impacts: Chaos and long-period motions, Phys. Rev. Lett., 51 (1983a) 623–626.MathSciNetCrossRef S.W. Shaw, P.J. Holmes, Periodically forced linear oscillator with impacts: Chaos and long-period motions, Phys. Rev. Lett., 51 (1983a) 623–626.MathSciNetCrossRef
145.
146.
151.
Zurück zum Zitat P. Thota, H. Dankowicz, Continuous and discontinuous grazing bifurcations in impacting oscillators, Phys. D, 214 (2006) 187–197.MATHMathSciNetCrossRef P. Thota, H. Dankowicz, Continuous and discontinuous grazing bifurcations in impacting oscillators, Phys. D, 214 (2006) 187–197.MATHMathSciNetCrossRef
152.
Zurück zum Zitat J.D. Vasundara, A.S. Vatsala, Generalized quasilinearization for an impulsive differential equation with variable moments of impulse, Dynam. Syst. Appl., 12 (2003) 369–382.MATH J.D. Vasundara, A.S. Vatsala, Generalized quasilinearization for an impulsive differential equation with variable moments of impulse, Dynam. Syst. Appl., 12 (2003) 369–382.MATH
153.
Zurück zum Zitat A.S. Vatsala, J. Vasundara Devi, Generalized monotone technique for an impulsive differential equation with variable moments of impulse, Nonlinear Stud., 9 (2002) 319–330.MATHMathSciNet A.S. Vatsala, J. Vasundara Devi, Generalized monotone technique for an impulsive differential equation with variable moments of impulse, Nonlinear Stud., 9 (2002) 319–330.MATHMathSciNet
155.
Zurück zum Zitat F. Wang, C. Hao, L. Chen, Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout. Chaos, solitons and fractals, 32 (2007) 181–194.MATHMathSciNetCrossRef F. Wang, C. Hao, L. Chen, Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout. Chaos, solitons and fractals, 32 (2007) 181–194.MATHMathSciNetCrossRef
158.
Zurück zum Zitat L.A. Wood, K.P. Byrne, Analysis of a random repeated impact process, J. Sound Vib., 82 (1981) 329–345.CrossRef L.A. Wood, K.P. Byrne, Analysis of a random repeated impact process, J. Sound Vib., 82 (1981) 329–345.CrossRef
159.
Zurück zum Zitat J. Yan, A. Zhao, J.J. Nieto, Existence and global activity of positive periodic solutions of periodic single-species impulsive Lotka-Volterra systems. Math. Comput. Model. 40 (2004) 509–518.MATHMathSciNetCrossRef J. Yan, A. Zhao, J.J. Nieto, Existence and global activity of positive periodic solutions of periodic single-species impulsive Lotka-Volterra systems. Math. Comput. Model. 40 (2004) 509–518.MATHMathSciNetCrossRef
160.
Zurück zum Zitat T. Yang, L.O. Chua, Impulsive control and synchronization of non-linear dynamical systems and application to secure communication, Int. J. Bifurcation Chaos Appl. Sci. Eng. (electronic resource), 7 (1997) 643–664.MathSciNet T. Yang, L.O. Chua, Impulsive control and synchronization of non-linear dynamical systems and application to secure communication, Int. J. Bifurcation Chaos Appl. Sci. Eng. (electronic resource), 7 (1997) 643–664.MathSciNet
162.
Zurück zum Zitat V.F. Zhuravlev, A method for analyzing vibration-impact systems by means of special functions, Mech. Solids, 11 (1976) 23–27.MathSciNet V.F. Zhuravlev, A method for analyzing vibration-impact systems by means of special functions, Mech. Solids, 11 (1976) 23–27.MathSciNet
Metadaten
Titel
Introduction
verfasst von
Marat Akhmet
Copyright-Jahr
2010
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6581-3_1