Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Koji Sugioka, Ya Cheng

Erschienen in: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. Multiphoton absorption enables both surface and internal three-dimensional modification and microfabrication of transparent materials such as glasses. This makes it possible to directly fabricate three-dimensional microfluidic, micromechanic, microelectronic, and micro-optical components in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser. Thus, femtosecond laser processing has several advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabricating microfluidic, optofluidic, and lab-on-a-chip devices. Consequently, this topic is currently being intensively studied. This book gives a comprehensive review of the state of the art and future prospects of femtosecond laser processing for fabricating devices such as biomicrochips.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burns MA, Johnson BN, Brahmasandra AN et al (1998) An integrated nanoliter DNA analysis device. Science 282:484–487CrossRef Burns MA, Johnson BN, Brahmasandra AN et al (1998) An integrated nanoliter DNA analysis device. Science 282:484–487CrossRef
2.
Zurück zum Zitat Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907 Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907
3.
Zurück zum Zitat Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef
4.
Zurück zum Zitat McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef
5.
Zurück zum Zitat Burg TP, Mirza AR, Milovic N et al (2006) Vacuum packaged suspended microchannel resonant mass sensor for biomolecular detection. IEEE/ASME J Microelectromech Syst 15:1466–1476CrossRef Burg TP, Mirza AR, Milovic N et al (2006) Vacuum packaged suspended microchannel resonant mass sensor for biomolecular detection. IEEE/ASME J Microelectromech Syst 15:1466–1476CrossRef
6.
Zurück zum Zitat Tokeshi M, Minagawa T, Uchiyama K et al (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRef Tokeshi M, Minagawa T, Uchiyama K et al (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571CrossRef
7.
Zurück zum Zitat Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser & Photon Rev 4:386–400CrossRef Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser & Photon Rev 4:386–400CrossRef
8.
Zurück zum Zitat Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRef Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027CrossRef
9.
Zurück zum Zitat Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589CrossRef
10.
Zurück zum Zitat Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl Phys Lett 54:4–6CrossRef Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl Phys Lett 54:4–6CrossRef
11.
Zurück zum Zitat Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond uv excimer laser pulses. Microelectron Eng 9:475–480CrossRef Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond uv excimer laser pulses. Microelectron Eng 9:475–480CrossRef
12.
Zurück zum Zitat Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRef Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731CrossRef
13.
Zurück zum Zitat Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025CrossRef Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025CrossRef
14.
Zurück zum Zitat Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279CrossRef
15.
Zurück zum Zitat Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860CrossRef
16.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10CrossRef Cheng Y, Sugioka K, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10CrossRef
17.
Zurück zum Zitat Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRef Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032CrossRef
18.
Zurück zum Zitat Matsuo S, Kiyama S, Shichijo Y et al (2008) Laser microfabrication and rotation of ship-in-a-bottle optical rotators. Appl Phys Lett 93:051107CrossRef Matsuo S, Kiyama S, Shichijo Y et al (2008) Laser microfabrication and rotation of ship-in-a-bottle optical rotators. Appl Phys Lett 93:051107CrossRef
19.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRef Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146CrossRef
20.
Zurück zum Zitat Cheng Y, Tsai HL, Sugioka K et al (2005) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14CrossRef Cheng Y, Tsai HL, Sugioka K et al (2005) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14CrossRef
21.
Zurück zum Zitat Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955CrossRef
22.
Zurück zum Zitat Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRef Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914CrossRef
23.
Zurück zum Zitat An R, Li Y, Dou Y et al (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13:1855–1859CrossRef An R, Li Y, Dou Y et al (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13:1855–1859CrossRef
24.
Zurück zum Zitat Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRef Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227CrossRef
25.
Zurück zum Zitat Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749CrossRef
26.
Zurück zum Zitat Yamada K, Watanabe W, Toma T et al (2001) In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. Opt Lett 26:19–21CrossRef Yamada K, Watanabe W, Toma T et al (2001) In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. Opt Lett 26:19–21CrossRef
27.
Zurück zum Zitat Schaffer CB, Brodeur A, Garcia JF et al (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26:93–95CrossRef Schaffer CB, Brodeur A, Garcia JF et al (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26:93–95CrossRef
28.
Zurück zum Zitat Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202CrossRef Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202CrossRef
29.
Zurück zum Zitat Kawamura K, Hirano M, Kamiya T et al (2002) Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl Phys Lett 81:1137–1139CrossRef Kawamura K, Hirano M, Kamiya T et al (2002) Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl Phys Lett 81:1137–1139CrossRef
30.
Zurück zum Zitat Watanabe W, Kuroda D, Itoh K et al (2002) Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt Express 10:978–983CrossRef Watanabe W, Kuroda D, Itoh K et al (2002) Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt Express 10:978–983CrossRef
31.
Zurück zum Zitat Gorelik M, Will S, Nolte A et al (2003) Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl Phys A 76:309–311CrossRef Gorelik M, Will S, Nolte A et al (2003) Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl Phys A 76:309–311CrossRef
32.
Zurück zum Zitat Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–2493CrossRef Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–2493CrossRef
33.
Zurück zum Zitat Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulsesJ. Lightwave Technol 21:246–253CrossRef Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulsesJ. Lightwave Technol 21:246–253CrossRef
34.
Zurück zum Zitat Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009CrossRef
35.
Zurück zum Zitat Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRef Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704CrossRef
36.
Zurück zum Zitat Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl Phys A 93:225–229CrossRef Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl Phys A 93:225–229CrossRef
37.
Zurück zum Zitat Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRef Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910CrossRef
38.
Zurück zum Zitat Xu J, Liao Y, Zeng H et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef Xu J, Liao Y, Zeng H et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748CrossRef
39.
Zurück zum Zitat Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRef Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410CrossRef
40.
Zurück zum Zitat Hanad a Y, Sugioka K, S-Ishikawa I et al (2008) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRef Hanad a Y, Sugioka K, S-Ishikawa I et al (2008) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115CrossRef
41.
Zurück zum Zitat Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173CrossRef
42.
Zurück zum Zitat Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRef Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688CrossRef
43.
Zurück zum Zitat Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318CrossRef
44.
Zurück zum Zitat Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243CrossRef
45.
Zurück zum Zitat Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688CrossRef
46.
Zurück zum Zitat Schaap A, Bellouard Y, Rohrlack T (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRef Schaap A, Bellouard Y, Rohrlack T (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664CrossRef
47.
Zurück zum Zitat Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532CrossRef
48.
Zurück zum Zitat Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRef Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9CrossRef
Metadaten
Titel
Introduction
verfasst von
Koji Sugioka
Ya Cheng
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5541-6_1

Neuer Inhalt