Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Andreas Buttenschön, Thomas Hillen

Erschienen in: Non-Local Cell Adhesion Models

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellular adhesion is one of the most important interaction forces in tissues. Cells adhere to each other, to other cells, and to the extracellular matrix (ECM). Cell adhesion is responsible for the formation of tissues, membranes, vasculature, muscle tissue, as well as cell movement and cancer spread.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Adioui, O. Arino, N. El Saadi, A nonlocal model of phytoplankton aggregation. Nonlinear Anal. Real World Appl. 6(4), 593–607 (2005)MathSciNetMATHCrossRef M. Adioui, O. Arino, N. El Saadi, A nonlocal model of phytoplankton aggregation. Nonlinear Anal. Real World Appl. 6(4), 593–607 (2005)MathSciNetMATHCrossRef
2.
Zurück zum Zitat B. Alberts, Molecular Biology of the Cell: Reference Edition, 5th edn. (Garland Science, New York, 2008) B. Alberts, Molecular Biology of the Cell: Reference Edition, 5th edn. (Garland Science, New York, 2008)
4.
Zurück zum Zitat W. Alt, Models for mutual attraction and aggregation of motile individuals, in Mathematics in Biology and Medicine. Lecture Notes in Biomathematics (Springer, Berlin, 1985), pp. 33–38 W. Alt, Models for mutual attraction and aggregation of motile individuals, in Mathematics in Biology and Medicine. Lecture Notes in Biomathematics (Springer, Berlin, 1985), pp. 33–38
5.
Zurück zum Zitat W. Alt, Degenerate diffusion equations with drift functionals modelling aggregation. Nonlinear Anal. Theory Methods Appl. 9(8), 811–836 (1985)MathSciNetMATHCrossRef W. Alt, Degenerate diffusion equations with drift functionals modelling aggregation. Nonlinear Anal. Theory Methods Appl. 9(8), 811–836 (1985)MathSciNetMATHCrossRef
7.
Zurück zum Zitat V. Andasari, M.A.J. Chaplain, Intracellular modelling of cell-matrix adhesion during cancer cell invasion. Math. Model. Nat. Phenom. 7(1), 29–48 (2012)MathSciNetMATHCrossRef V. Andasari, M.A.J. Chaplain, Intracellular modelling of cell-matrix adhesion during cancer cell invasion. Math. Model. Nat. Phenom. 7(1), 29–48 (2012)MathSciNetMATHCrossRef
8.
Zurück zum Zitat A.R.A. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–86 (2005)MATHCrossRef A.R.A. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–86 (2005)MATHCrossRef
10.
Zurück zum Zitat N.J. Armstrong, K.J. Painter, J.A. Sherratt, A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243(1), 98–113 (2006)MathSciNetMATHCrossRef N.J. Armstrong, K.J. Painter, J.A. Sherratt, A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243(1), 98–113 (2006)MathSciNetMATHCrossRef
11.
Zurück zum Zitat N.J. Armstrong, K.J. Painter, J.A. Sherratt, Adding adhesion to a chemical signaling model for somite formation. Bull. Math. Biol. 71(1), 1–24 (2009)MathSciNetMATHCrossRef N.J. Armstrong, K.J. Painter, J.A. Sherratt, Adding adhesion to a chemical signaling model for somite formation. Bull. Math. Biol. 71(1), 1–24 (2009)MathSciNetMATHCrossRef
12.
Zurück zum Zitat P.B. Armstrong, Light and electron microscope studies of cell sorting in combinations of chick embryo neural retina and retinal pigment epithelium. Wilhelm Roux Arch. Entwickl. Org. 168(2), 125–141 (1971)CrossRef P.B. Armstrong, Light and electron microscope studies of cell sorting in combinations of chick embryo neural retina and retinal pigment epithelium. Wilhelm Roux Arch. Entwickl. Org. 168(2), 125–141 (1971)CrossRef
13.
Zurück zum Zitat R. Bailo, J.A. Carrillo, J. Hu, Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure. Commun. Math. Sci. 18(5), 1259–1303 (2020)MathSciNetMATHCrossRef R. Bailo, J.A. Carrillo, J. Hu, Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure. Commun. Math. Sci. 18(5), 1259–1303 (2020)MathSciNetMATHCrossRef
14.
Zurück zum Zitat R. Bailo, J.A. Carrillo, H. Murakawa, M. Schmidtchen, Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations (2020). Preprint, arXiv:2002.10821 R. Bailo, J.A. Carrillo, H. Murakawa, M. Schmidtchen, Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations (2020). Preprint, arXiv:2002.10821
15.
Zurück zum Zitat J. Barré, J.A. Carrillo, P. Degond, D. Peurichard, E. Zatorska, Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions. J. Nonlinear Sci. 28(1), 235–268 (2018)MathSciNetMATHCrossRef J. Barré, J.A. Carrillo, P. Degond, D. Peurichard, E. Zatorska, Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions. J. Nonlinear Sci. 28(1), 235–268 (2018)MathSciNetMATHCrossRef
16.
Zurück zum Zitat J. Barré, P. Degond, E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks. Multiscale Model. Simul. 15(3), 1294–1323 (2017)MathSciNetCrossRef J. Barré, P. Degond, E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks. Multiscale Model. Simul. 15(3), 1294–1323 (2017)MathSciNetCrossRef
18.
20.
Zurück zum Zitat V. Bitsouni, M.A.J. Chaplain, R. Eftimie, Mathematical modelling of cancer invasion: The multiple roles of tgf/β pathway on tumour proliferation and cell adhesion. Math. Models Methods Appl. Sci. 27(10), 1929–1962 (2017)MathSciNetMATHCrossRef V. Bitsouni, M.A.J. Chaplain, R. Eftimie, Mathematical modelling of cancer invasion: The multiple roles of tgf/β pathway on tumour proliferation and cell adhesion. Math. Models Methods Appl. Sci. 27(10), 1929–1962 (2017)MathSciNetMATHCrossRef
22.
Zurück zum Zitat I. Borsi, A. Fasano, M. Primicerio, T. Hillen, A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34(1), 59–75 (2017)MathSciNetMATH I. Borsi, A. Fasano, M. Primicerio, T. Hillen, A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34(1), 59–75 (2017)MathSciNetMATH
23.
Zurück zum Zitat B. Brandolini, P. Freitas, C. Nitsch, C. Trombetti, Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem. Adv. Math. 228(4), 2352–2365 (2011)MathSciNetMATHCrossRef B. Brandolini, P. Freitas, C. Nitsch, C. Trombetti, Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem. Adv. Math. 228(4), 2352–2365 (2011)MathSciNetMATHCrossRef
24.
Zurück zum Zitat N.F. Britton, Reaction-Diffusion Equations and Their Applications to Biology (Academic Press, London, 1986)MATH N.F. Britton, Reaction-Diffusion Equations and Their Applications to Biology (Academic Press, London, 1986)MATH
25.
Zurück zum Zitat G.W. Brodland, The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124(2), 188 (2002) G.W. Brodland, The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 124(2), 188 (2002)
26.
Zurück zum Zitat G.W. Brodland, H.H. Chen, The mechanics of cell sorting and envelopment. J. Biomech. 33(7), 845–51 (2000)CrossRef G.W. Brodland, H.H. Chen, The mechanics of cell sorting and envelopment. J. Biomech. 33(7), 845–51 (2000)CrossRef
28.
Zurück zum Zitat P.L. Buono, R. Eftimie, Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation. J. Math. Biol. 71(4), 847–881 (2015)MathSciNetMATHCrossRef P.L. Buono, R. Eftimie, Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation. J. Math. Biol. 71(4), 847–881 (2015)MathSciNetMATHCrossRef
29.
Zurück zum Zitat M. Burger, M. Di Francesco, S. Fagioli, A. Stevens, Sorting phenomena in a mathematical model for two mutually attracting/repelling species. SIAM J. Math. Anal. 50(3), 3210–3250 (2018)MathSciNetMATHCrossRef M. Burger, M. Di Francesco, S. Fagioli, A. Stevens, Sorting phenomena in a mathematical model for two mutually attracting/repelling species. SIAM J. Math. Anal. 50(3), 3210–3250 (2018)MathSciNetMATHCrossRef
31.
Zurück zum Zitat A. Buttenschön, T. Hillen, A. Gerisch, K.J. Painter, A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. J. Math. Biol. 76(1), 429–456 (2018)MathSciNetMATHCrossRef A. Buttenschön, T. Hillen, A. Gerisch, K.J. Painter, A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. J. Math. Biol. 76(1), 429–456 (2018)MathSciNetMATHCrossRef
32.
Zurück zum Zitat H.M. Byrne, M.A.J. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Model. 24(12), 1–17 (1996)MATHCrossRef H.M. Byrne, M.A.J. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Model. 24(12), 1–17 (1996)MATHCrossRef
33.
Zurück zum Zitat H.M. Byrne, D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)MathSciNetMATHCrossRef H.M. Byrne, D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)MathSciNetMATHCrossRef
35.
Zurück zum Zitat J.A. Carrillo, X. Chen, Q. Wang, Z.A. Wang, L. Zhang, Phase transitions and bump solutions of the Keller–Segel model with volume exclusion. SIAM J. Appl. Math. 80(1), 232–261 (2020)MathSciNetMATHCrossRef J.A. Carrillo, X. Chen, Q. Wang, Z.A. Wang, L. Zhang, Phase transitions and bump solutions of the Keller–Segel model with volume exclusion. SIAM J. Appl. Math. 80(1), 232–261 (2020)MathSciNetMATHCrossRef
36.
Zurück zum Zitat J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure (2014). Preprint, arXiv:1402.4252 J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure (2014). Preprint, arXiv:1402.4252
37.
Zurück zum Zitat J.A. Carrillo, R.S. Gvalani, G.A. Pavliotis, A. Schlichting, Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus. Arch. Ration. Mech. Anal. 235(1), 635–690 (2020)MathSciNetMATHCrossRef J.A. Carrillo, R.S. Gvalani, G.A. Pavliotis, A. Schlichting, Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus. Arch. Ration. Mech. Anal. 235(1), 635–690 (2020)MathSciNetMATHCrossRef
40.
Zurück zum Zitat M.A.J. Chaplain, M. Lachowicz, Z. Szymanska, D. Wrzosek, Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21(04), 719–743 (2011)MathSciNetMATHCrossRef M.A.J. Chaplain, M. Lachowicz, Z. Szymanska, D. Wrzosek, Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21(04), 719–743 (2011)MathSciNetMATHCrossRef
41.
Zurück zum Zitat H.H. Chen, G.W. Brodland, Cell-level finite element studies of viscous cells in planar aggregates. J. Biomech. Eng. 122(4), 394–401 (2000)CrossRef H.H. Chen, G.W. Brodland, Cell-level finite element studies of viscous cells in planar aggregates. J. Biomech. Eng. 122(4), 394–401 (2000)CrossRef
42.
Zurück zum Zitat R.H. Chisholm, T. Lorenzi, A. Lorz, A. Larsen, L. Almeida, A. Escargueil, J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation. Cancer Res. 75, 930–939 (2015)CrossRef R.H. Chisholm, T. Lorenzi, A. Lorz, A. Larsen, L. Almeida, A. Escargueil, J. Clairambault, Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, non-genetic instability and stress-induced adaptation. Cancer Res. 75, 930–939 (2015)CrossRef
45.
Zurück zum Zitat M.G. Crandall, P.H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topological degree. J. Math. Mech. 19(12), 1083–1102 (1970)MathSciNetMATH M.G. Crandall, P.H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topological degree. J. Math. Mech. 19(12), 1083–1102 (1970)MathSciNetMATH
49.
50.
Zurück zum Zitat F.A. Davidson, N. Dodds, Spectral properties of non-local uniformly-elliptic operators. Electron. J. Differ. Equ. 126, 1–15 (2006)MathSciNetMATHCrossRef F.A. Davidson, N. Dodds, Spectral properties of non-local uniformly-elliptic operators. Electron. J. Differ. Equ. 126, 1–15 (2006)MathSciNetMATHCrossRef
51.
Zurück zum Zitat F.A. Davidson, N. Dodds, Existence of positive solutions due to non-local interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14(1), 15–28 (2007)MathSciNetMATHCrossRef F.A. Davidson, N. Dodds, Existence of positive solutions due to non-local interactions in a class of nonlinear boundary value problems. Methods Appl. Anal. 14(1), 15–28 (2007)MathSciNetMATHCrossRef
52.
Zurück zum Zitat M. Delgado, I.B.M. Duarte, A. Suarez, Nonlocal problem arising from the birth-jump processes. Proc. R. Soc. Edinb. Sect. A Math. 149(2), 1–23 (2018)MathSciNet M. Delgado, I.B.M. Duarte, A. Suarez, Nonlocal problem arising from the birth-jump processes. Proc. R. Soc. Edinb. Sect. A Math. 149(2), 1–23 (2018)MathSciNet
56.
Zurück zum Zitat P. Domschke, D. Trucu, A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361C, 41–60 (2014)MathSciNetMATHCrossRef P. Domschke, D. Trucu, A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361C, 41–60 (2014)MathSciNetMATHCrossRef
57.
Zurück zum Zitat D. Drasdo, S. Höhme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2(3), 133–147 (2005)CrossRef D. Drasdo, S. Höhme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2(3), 133–147 (2005)CrossRef
58.
Zurück zum Zitat A. Ducrot, P. Magal, Asymptotic behavior of a non-local diffusive logistic equation. SIAM J. Math. Anal. 46, 1731–1753 (2014)MathSciNetMATHCrossRef A. Ducrot, P. Magal, Asymptotic behavior of a non-local diffusive logistic equation. SIAM J. Math. Anal. 46, 1731–1753 (2014)MathSciNetMATHCrossRef
60.
61.
Zurück zum Zitat R. Eftimie, G. de Vries, M.A. Lewis, Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. USA 104(17), 6974–6979 (2007)MathSciNetMATHCrossRef R. Eftimie, G. de Vries, M.A. Lewis, Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. USA 104(17), 6974–6979 (2007)MathSciNetMATHCrossRef
62.
Zurück zum Zitat R. Eftimie, G. De Vries, M.A. Lewis, F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol. 69(5), 1537–1565 (2007)MathSciNetMATHCrossRef R. Eftimie, G. De Vries, M.A. Lewis, F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull. Math. Biol. 69(5), 1537–1565 (2007)MathSciNetMATHCrossRef
66.
Zurück zum Zitat P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, vol. 28 (Springer, Berlin, 1979)MATH P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, vol. 28 (Springer, Berlin, 1979)MATH
67.
Zurück zum Zitat R.A. Foty, M.S. Steinberg, Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6), 397–409 (2004)CrossRef R.A. Foty, M.S. Steinberg, Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48(5–6), 397–409 (2004)CrossRef
68.
Zurück zum Zitat P. Freitas, Bifurcation and stability of stationary solutions of nonlocal scalar reaction-diffusion equations. J. Dyn. Differ. Equ. 6(4), 613–629 (1994)MathSciNetMATHCrossRef P. Freitas, Bifurcation and stability of stationary solutions of nonlocal scalar reaction-diffusion equations. J. Dyn. Differ. Equ. 6(4), 613–629 (1994)MathSciNetMATHCrossRef
69.
70.
Zurück zum Zitat P. Freitas, M. Vishnevskii, Stability of stationary solutions of nonlocal reaction-diffusion equations in m-dimensional space. Differ. Integral Equ. 13(1–3), 265–288 (2000)MathSciNetMATH P. Freitas, M. Vishnevskii, Stability of stationary solutions of nonlocal reaction-diffusion equations in m-dimensional space. Differ. Integral Equ. 13(1–3), 265–288 (2000)MathSciNetMATH
71.
Zurück zum Zitat P. Friedl, R. Mayor, Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb. Perspect. Biol. 9, a029199 (2017)CrossRef P. Friedl, R. Mayor, Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb. Perspect. Biol. 9, a029199 (2017)CrossRef
74.
Zurück zum Zitat A. Gerisch, Numerical methods for the simulation of taxis diffusion reaction systems. Ph.D. Thesis, Martin-Luther-Universitat Halle-Wittenberg, 2001 A. Gerisch, Numerical methods for the simulation of taxis diffusion reaction systems. Ph.D. Thesis, Martin-Luther-Universitat Halle-Wittenberg, 2001
75.
Zurück zum Zitat A. Gerisch, On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. IMA J. Numer. Anal. 30(1), 173–194 (2010)MathSciNetMATHCrossRef A. Gerisch, On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion. IMA J. Numer. Anal. 30(1), 173–194 (2010)MathSciNetMATHCrossRef
76.
Zurück zum Zitat A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250(4), 684–704 (2008)MathSciNetMATHCrossRef A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250(4), 684–704 (2008)MathSciNetMATHCrossRef
77.
Zurück zum Zitat A. Gerisch, K.J. Painter, Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, in Cell Mechanics: From Single Scale-Based Models to Multiscale Modelling, ed. by A. Chauviére, L. Preziosi, C. Verdier (CRC Press, Boca Raton, 2010), pp. 319–350MATHCrossRef A. Gerisch, K.J. Painter, Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, in Cell Mechanics: From Single Scale-Based Models to Multiscale Modelling, ed. by A. Chauviére, L. Preziosi, C. Verdier (CRC Press, Boca Raton, 2010), pp. 319–350MATHCrossRef
79.
Zurück zum Zitat S.F. Gilbert, M.J.F. Barresi, Developmental Biology, 12th edn. (Oxford University Press, Oxford, 2020) S.F. Gilbert, M.J.F. Barresi, Developmental Biology, 12th edn. (Oxford University Press, Oxford, 2020)
80.
Zurück zum Zitat J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154 (1993)CrossRef J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154 (1993)CrossRef
83.
Zurück zum Zitat F. Graner, Can surface adhesion drive cell-rearrangement? Part I: Biological cell-sorting. J. Theor. Biol. 164(4), 455–476 (1993) F. Graner, Can surface adhesion drive cell-rearrangement? Part I: Biological cell-sorting. J. Theor. Biol. 164(4), 455–476 (1993)
84.
Zurück zum Zitat F. Graner, J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRef F. Graner, J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013–2016 (1992)CrossRef
85.
Zurück zum Zitat F. Graner, Y. Sawada, Can surface adhesion drive cell rearrangement? Part II: a geometrical model. J. Theor. Biol. 164(4), 477–506 (1993) F. Graner, Y. Sawada, Can surface adhesion drive cell rearrangement? Part II: a geometrical model. J. Theor. Biol. 164(4), 477–506 (1993)
86.
Zurück zum Zitat M.L. Graves, J.A. Cipollone, P. Austin, E.M. Bell, J.S. Nielsen, C.B. Gilks, K.M. McNagny, C.D. Roskelley, The cell surface mucin podocalyxin regulates collective breast tumor budding. Breast Cancer Res. 18(1), 11 (2016) M.L. Graves, J.A. Cipollone, P. Austin, E.M. Bell, J.S. Nielsen, C.B. Gilks, K.M. McNagny, C.D. Roskelley, The cell surface mucin podocalyxin regulates collective breast tumor budding. Breast Cancer Res. 18(1), 11 (2016)
87.
Zurück zum Zitat J.M. Halbleib, W.J. Nelson, Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20(23), 3199–3214 (2006)CrossRef J.M. Halbleib, W.J. Nelson, Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20(23), 3199–3214 (2006)CrossRef
89.
Zurück zum Zitat D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRef D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRef
90.
Zurück zum Zitat D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)CrossRef D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)CrossRef
91.
Zurück zum Zitat A.K. Harris, Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61(2), 267–285 (1976) A.K. Harris, Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61(2), 267–285 (1976)
94.
Zurück zum Zitat T.J. Healey, H.J. Kielhöfer, Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations. Arch. Ration. Mech. Anal. 113(4), 299–311 (1991)MathSciNetMATHCrossRef T.J. Healey, H.J. Kielhöfer, Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations. Arch. Ration. Mech. Anal. 113(4), 299–311 (1991)MathSciNetMATHCrossRef
98.
Zurück zum Zitat T. Hillen, H. Enderling, P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75(1), 161–184 (2013)MathSciNetMATHCrossRef T. Hillen, H. Enderling, P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75(1), 161–184 (2013)MathSciNetMATHCrossRef
99.
Zurück zum Zitat T. Hillen, B. Greese, J. Martin, G. de Vries, Birth-jump processes and application to forest fire spotting. J. Biol. Dyn. 9(Suppl. 1), 104–127 (2015)MathSciNetMATHCrossRef T. Hillen, B. Greese, J. Martin, G. de Vries, Birth-jump processes and application to forest fire spotting. J. Biol. Dyn. 9(Suppl. 1), 104–127 (2015)MathSciNetMATHCrossRef
100.
Zurück zum Zitat T. Hillen, C. Painter, K.J. Schmeiser, Global existence for chemotaxis with finite sampling radius. Discrete Contin. Dyn. Syst. Ser. B 7(1), 125–144 (2006)MathSciNetMATH T. Hillen, C. Painter, K.J. Schmeiser, Global existence for chemotaxis with finite sampling radius. Discrete Contin. Dyn. Syst. Ser. B 7(1), 125–144 (2006)MathSciNetMATH
102.
Zurück zum Zitat T. Hillen, M. Painter, K.J. Winkler, Global solvability and explicit bounds for a non-local adhesion model. Eur. J. Appl. Math. 29, 645–684 (2018)MathSciNetMATHCrossRef T. Hillen, M. Painter, K.J. Winkler, Global solvability and explicit bounds for a non-local adhesion model. Eur. J. Appl. Math. 29, 645–684 (2018)MathSciNetMATHCrossRef
104.
Zurück zum Zitat S. Hoehme, D. Drasdo, Biomechanical and nutrient controls in the growth of mammalian cell populations. Math. Popul. Stud. 17(3), 166–187 (2010)MathSciNetMATHCrossRef S. Hoehme, D. Drasdo, Biomechanical and nutrient controls in the growth of mammalian cell populations. Math. Popul. Stud. 17(3), 166–187 (2010)MathSciNetMATHCrossRef
105.
Zurück zum Zitat D. Horstmann, From 1970 until present : the Keller-Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math. Vereinigung 105(3), 103–165 (2003)MathSciNetMATH D. Horstmann, From 1970 until present : the Keller-Segel model in chemotaxis and its consequences. Jahresber. Dtsch. Math. Vereinigung 105(3), 103–165 (2003)MathSciNetMATH
106.
Zurück zum Zitat S.B. Hsu, J. López-Gómez, L. Mei, M. Molina-Meyer, A nonlocal problem from conservation biology. SIAM J. Math. Anal. 46(6), 4035–4059 (2014)MathSciNetMATHCrossRef S.B. Hsu, J. López-Gómez, L. Mei, M. Molina-Meyer, A nonlocal problem from conservation biology. SIAM J. Math. Anal. 46(6), 4035–4059 (2014)MathSciNetMATHCrossRef
108.
Zurück zum Zitat T. Ikeda, Standing pulse-like solutions of a spatially aggregating population model. Jpn. J. Appl. Math. 2(1), 111–149 (1985)MathSciNetMATHCrossRef T. Ikeda, Standing pulse-like solutions of a spatially aggregating population model. Jpn. J. Appl. Math. 2(1), 111–149 (1985)MathSciNetMATHCrossRef
110.
Zurück zum Zitat D. Iron, M.J. Ward, A metastable spike solution for a nonlocal reaction-diffusion model. SIAM J. Appl. Math. 60(3), 778–802 (2000)MathSciNetMATHCrossRef D. Iron, M.J. Ward, A metastable spike solution for a nonlocal reaction-diffusion model. SIAM J. Appl. Math. 60(3), 778–802 (2000)MathSciNetMATHCrossRef
111.
Zurück zum Zitat K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 324(1558), 301–313 (1971) K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 324(1558), 301–313 (1971)
113.
Zurück zum Zitat R. Klages, Anomalous Transport: Foundations and Applications (Wiley, Hoboken, 2008)CrossRef R. Klages, Anomalous Transport: Foundations and Applications (Wiley, Hoboken, 2008)CrossRef
114.
Zurück zum Zitat H. Knútsdóttir, E. Pálsson, L. Edelstein-Keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion. J. Theor. Biol. 357, 184–199 (2014)MathSciNetMATHCrossRef H. Knútsdóttir, E. Pálsson, L. Edelstein-Keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion. J. Theor. Biol. 357, 184–199 (2014)MathSciNetMATHCrossRef
116.
Zurück zum Zitat M. Kot, M.A. Lewis, M.G. Neubert, Integrodifference equations, in Encyclopedia of Theoretical Ecology, ed. by A. Hastings, L. Gross (University of California Press, Berkeley, 2012), pp. 382–384 M. Kot, M.A. Lewis, M.G. Neubert, Integrodifference equations, in Encyclopedia of Theoretical Ecology, ed. by A. Hastings, L. Gross (University of California Press, Berkeley, 2012), pp. 382–384
118.
Zurück zum Zitat J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R91 (2010)MathSciNetMATHCrossRef J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R91 (2010)MathSciNetMATHCrossRef
119.
Zurück zum Zitat J. López-Gómez, On the structure and stability of the set of solutions of a nonlocal problem modeling ohmic heating. J. Dyn. Differ. Equ. 10(4), 537–566 (1998)MathSciNetMATHCrossRef J. López-Gómez, On the structure and stability of the set of solutions of a nonlocal problem modeling ohmic heating. J. Dyn. Differ. Equ. 10(4), 537–566 (1998)MathSciNetMATHCrossRef
123.
Zurück zum Zitat P. Macklin, S. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J.S. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)MathSciNetMATHCrossRef P. Macklin, S. McDougall, A.R.A. Anderson, M.A.J. Chaplain, V. Cristini, J.S. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol. 58(4–5), 765–798 (2009)MathSciNetMATHCrossRef
124.
Zurück zum Zitat J. Martin, T. Hillen, The spotting distribution of wildfires. Appl. Sci. 6(6), 177 (2016) J. Martin, T. Hillen, The spotting distribution of wildfires. Appl. Sci. 6(6), 177 (2016)
127.
Zurück zum Zitat P. McMillen, S.A. Holley, Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Curr. Opin. Cell Biol. 36, 48–53 (2015)CrossRef P. McMillen, S.A. Holley, Integration of cell-cell and cell-ECM adhesion in vertebrate morphogenesis. Curr. Opin. Cell Biol. 36, 48–53 (2015)CrossRef
129.
Zurück zum Zitat A. Mogilner, Modelling spatio-angular patterns in cell biology. Ph.D. Thesis, University of British Columbia, 1995 A. Mogilner, Modelling spatio-angular patterns in cell biology. Ph.D. Thesis, University of British Columbia, 1995
133.
Zurück zum Zitat H. Murakawa, H. Togashi, Continuous models for cell-cell adhesion. J. Theor. Biol. 374, 1–12 (2015)MATHCrossRef H. Murakawa, H. Togashi, Continuous models for cell-cell adhesion. J. Theor. Biol. 374, 1–12 (2015)MATHCrossRef
135.
Zurück zum Zitat T. Nagai, Some nonlinear degenerate diffusion equations with a nonlocally convective term in ecology. Hiroshima Math. J. 13(1), 165–202 (1983)MathSciNetMATHCrossRef T. Nagai, Some nonlinear degenerate diffusion equations with a nonlocally convective term in ecology. Hiroshima Math. J. 13(1), 165–202 (1983)MathSciNetMATHCrossRef
136.
Zurück zum Zitat T. Nagai, M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43(3), 449–464 (1983)MathSciNetMATHCrossRef T. Nagai, M. Mimura, Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43(3), 449–464 (1983)MathSciNetMATHCrossRef
137.
Zurück zum Zitat T. Nagai, M. Mimura, Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Jpn. 35(3), 539–562 (1983)MathSciNetMATHCrossRef T. Nagai, M. Mimura, Some nonlinear degenerate diffusion equations related to population dynamics. J. Math. Soc. Jpn. 35(3), 539–562 (1983)MathSciNetMATHCrossRef
138.
Zurück zum Zitat M.G. Neubert, H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81(6), 1613–1628 (2000)CrossRef M.G. Neubert, H. Caswell, Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81(6), 1613–1628 (2000)CrossRef
139.
Zurück zum Zitat M.A. Nieto, The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011)CrossRef M.A. Nieto, The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011)CrossRef
141.
Zurück zum Zitat A. Okubo, S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives, vol. 14 (Springer Science & Business Media, New York, 2001)MATHCrossRef A. Okubo, S.A. Levin, Diffusion and Ecological Problems: Modern Perspectives, vol. 14 (Springer Science & Business Media, New York, 2001)MATHCrossRef
143.
Zurück zum Zitat H.G. Othmer, T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)MathSciNetMATHCrossRef H.G. Othmer, T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)MathSciNetMATHCrossRef
144.
Zurück zum Zitat C. Ou, Y. Zhang, Traveling wavefronts of nonlocal reaction-diffusion models for adhesion in cell aggregation and cancer invasion. Can. Appl. Math. Q. 21(1), 21–62 (2013)MathSciNetMATH C. Ou, Y. Zhang, Traveling wavefronts of nonlocal reaction-diffusion models for adhesion in cell aggregation and cancer invasion. Can. Appl. Math. Q. 21(1), 21–62 (2013)MathSciNetMATH
145.
Zurück zum Zitat J.A. Owen, J. Punt, S.A. Stranford, Kuby Immunology (W. H. Freeman, New York, 2013) J.A. Owen, J. Punt, S.A. Stranford, Kuby Immunology (W. H. Freeman, New York, 2013)
146.
Zurück zum Zitat J.M. Painter, K.J., Bloomfield, J.A. Sherratt, A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull. Math. Biol. 77(6), 1132–1165 (2015) J.M. Painter, K.J., Bloomfield, J.A. Sherratt, A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations. Bull. Math. Biol. 77(6), 1132–1165 (2015)
148.
Zurück zum Zitat K.J. Painter, N.J. Armstrong, J.A. Sherratt, The impact of adhesion on cellular invasion processes in cancer and development. J. Theor. Biol. 264(3), 1057–1067 (2010)MathSciNetMATHCrossRef K.J. Painter, N.J. Armstrong, J.A. Sherratt, The impact of adhesion on cellular invasion processes in cancer and development. J. Theor. Biol. 264(3), 1057–1067 (2010)MathSciNetMATHCrossRef
149.
Zurück zum Zitat A. Paksa, J. Bandemer, B. Hoeckendorf, N. Razin, K. Tarbashevich, S. Minina, D. Meyen, A. Biundo, S.A. Leidel, N. Peyriéras, N.S. Gov, P.J. Keller, E. Raz, Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis. Nat. Commun. 7, 1–14 (2016)CrossRef A. Paksa, J. Bandemer, B. Hoeckendorf, N. Razin, K. Tarbashevich, S. Minina, D. Meyen, A. Biundo, S.A. Leidel, N. Peyriéras, N.S. Gov, P.J. Keller, E. Raz, Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis. Nat. Commun. 7, 1–14 (2016)CrossRef
150.
Zurück zum Zitat E. Palsson, H.G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97(19), 10448–10453 (2000)CrossRef E. Palsson, H.G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97(19), 10448–10453 (2000)CrossRef
151.
Zurück zum Zitat A.J. Perumpanani, J.A. Sherratt, J. Norbury, H.M. Byrne, Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16(4–5), 209–221 (1996) A.J. Perumpanani, J.A. Sherratt, J. Norbury, H.M. Byrne, Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16(4–5), 209–221 (1996)
154.
Zurück zum Zitat A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D.K. Fygenson, B.I. Shraiman, Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA 109(3), 739–744 (2012)CrossRef A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D.K. Fygenson, B.I. Shraiman, Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA 109(3), 739–744 (2012)CrossRef
157.
Zurück zum Zitat I. Ramis-Conde, M.A.J. Chaplain, A.R.A. Anderson, Mathematical modelling of cancer cell invasion of tissue. Math. Comput. Model. 47(5–6), 533–545 (2008)MathSciNetMATHCrossRef I. Ramis-Conde, M.A.J. Chaplain, A.R.A. Anderson, Mathematical modelling of cancer cell invasion of tissue. Math. Comput. Model. 47(5–6), 533–545 (2008)MathSciNetMATHCrossRef
158.
Zurück zum Zitat I. Ramis-Conde, D. Drasdo, A.R.A. Anderson, M.A.J. Chaplain, Modeling the influence of the e-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef I. Ramis-Conde, D. Drasdo, A.R.A. Anderson, M.A.J. Chaplain, Modeling the influence of the e-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys. J. 95(1), 155–165 (2008)CrossRef
163.
Zurück zum Zitat D.K. Schlüter, I. Ramis-Conde, M.A.J. Chaplain, Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103(6), 1141–1151 (2012)CrossRef D.K. Schlüter, I. Ramis-Conde, M.A.J. Chaplain, Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys. J. 103(6), 1141–1151 (2012)CrossRef
164.
Zurück zum Zitat D.K. Schlüter, I. Ramis-Conde, M.A.J. Chaplain, Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J. R. Soc. Interface 12(103), 20141080 (2015) D.K. Schlüter, I. Ramis-Conde, M.A.J. Chaplain, Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations. J. R. Soc. Interface 12(103), 20141080 (2015)
165.
Zurück zum Zitat M. Scianna, L. Preziosi, Cellular Potts Models: Multiscale Extensions and Biological Applications. Chapman & Hall/CRC Mathematical and Computational Biology (Taylor & Francis, Boca Raton, 2013) M. Scianna, L. Preziosi, Cellular Potts Models: Multiscale Extensions and Biological Applications. Chapman & Hall/CRC Mathematical and Computational Biology (Taylor & Francis, Boca Raton, 2013)
166.
Zurück zum Zitat J.A. Sherratt, S.A. Gourley, N.J. Armstrong, K.J. Painter, Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur. J. Appl. Math. 20(01), 123–144 (2009)MathSciNetMATHCrossRef J.A. Sherratt, S.A. Gourley, N.J. Armstrong, K.J. Painter, Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur. J. Appl. Math. 20(01), 123–144 (2009)MathSciNetMATHCrossRef
170.
Zurück zum Zitat M.S. Steinberg, Reconstruction of tissues by dissociated cells. Science 141(3579), 401–408 (1963)CrossRef M.S. Steinberg, Reconstruction of tissues by dissociated cells. Science 141(3579), 401–408 (1963)CrossRef
171.
Zurück zum Zitat M.S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173(4), 395–433 (1970) M.S. Steinberg, Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173(4), 395–433 (1970)
172.
Zurück zum Zitat M.S. Steinberg, Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17(4), 281–286 (2007)CrossRef M.S. Steinberg, Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17(4), 281–286 (2007)CrossRef
175.
Zurück zum Zitat H.B. Taylor, A. Khuong, Z. Wu, Q. Xu, R. Morley, L. Gregory, A. Poliakov, W.R. Taylor, D.G. Wilkinson, Cell segregation and border sharpening by eph receptor–ephrin-mediated heterotypic repulsion. J. R. Soc. Interface 14(132), 20170338 (2017) H.B. Taylor, A. Khuong, Z. Wu, Q. Xu, R. Morley, L. Gregory, A. Poliakov, W.R. Taylor, D.G. Wilkinson, Cell segregation and border sharpening by eph receptor–ephrin-mediated heterotypic repulsion. J. R. Soc. Interface 14(132), 20170338 (2017)
176.
Zurück zum Zitat J.P. Taylor-King, R. Klages, R.A. Van Gorder, Fractional diffusion equation for an n-dimensional correlated Levy walk. Phys. Rev. E 94(1), 012104 (2016) J.P. Taylor-King, R. Klages, R.A. Van Gorder, Fractional diffusion equation for an n-dimensional correlated Levy walk. Phys. Rev. E 94(1), 012104 (2016)
177.
Zurück zum Zitat C.M. Topaz, A.L. Bertozzi, M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601–1623 (2006)MathSciNetMATHCrossRef C.M. Topaz, A.L. Bertozzi, M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601–1623 (2006)MathSciNetMATHCrossRef
180.
Zurück zum Zitat S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216(1), 85–100 (2002)MathSciNetCrossRef S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216(1), 85–100 (2002)MathSciNetCrossRef
181.
Zurück zum Zitat S. Turner, J.A. Sherratt, K.J. Painter, N. Savill, From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69(2), 021910 (2004) S. Turner, J.A. Sherratt, K.J. Painter, N. Savill, From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69(2), 021910 (2004)
184.
Zurück zum Zitat X. Wang, Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2013)MathSciNetMATHCrossRef X. Wang, Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2013)MathSciNetMATHCrossRef
185.
Zurück zum Zitat S. Watanabe, S. Matsumoto, T. Higurashi, N. Ono, Burgers equation with no-flux boundary conditions and its application for complete fluid separation. Physica D 331, 1–12 (2016)MathSciNetMATHCrossRef S. Watanabe, S. Matsumoto, T. Higurashi, N. Ono, Burgers equation with no-flux boundary conditions and its application for complete fluid separation. Physica D 331, 1–12 (2016)MathSciNetMATHCrossRef
187.
Zurück zum Zitat R.A. Weinberg, The Biology of Cancer (Garland Science, New York, 2013)CrossRef R.A. Weinberg, The Biology of Cancer (Garland Science, New York, 2013)CrossRef
189.
Zurück zum Zitat H.V. Wilson, On some phenomena of coalescence and regeneration in sponges. J. Elisha Mitchell Sci. Soc. 23(4), 161–174 (1907) H.V. Wilson, On some phenomena of coalescence and regeneration in sponges. J. Elisha Mitchell Sci. Soc. 23(4), 161–174 (1907)
192.
Zurück zum Zitat T. Xiang, A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 18(9), 2457–2485 (2013)MathSciNetMATH T. Xiang, A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 18(9), 2457–2485 (2013)MathSciNetMATH
193.
Zurück zum Zitat X. Zhang, L. Mei, On a nonlocal reaction-diffusion-advection system modeling phyto-plankton growth with light and nutrients. Discrete Contin. Dyn. Syst. Ser. B 17(1), 221–243 (2011) X. Zhang, L. Mei, On a nonlocal reaction-diffusion-advection system modeling phyto-plankton growth with light and nutrients. Discrete Contin. Dyn. Syst. Ser. B 17(1), 221–243 (2011)
Metadaten
Titel
Introduction
verfasst von
Andreas Buttenschön
Thomas Hillen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-67111-2_1