Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Our understanding of rheological properties of the Earth’s interior is largely based on a combination of mineral physics data and direct geophysical observations. Hence seismic velocities and attenuation may be interpreted if we understand how they depend on the mechanical properties of matter. For example, the travel-times and amplitudes of seismic waves propagating through the Earth can be interpreted in terms of mineralogical models when we know the properties of minerals and rocks at depth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press. Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.
2.
Zurück zum Zitat Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140.CrossRef Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140.CrossRef
3.
Zurück zum Zitat Jones, A. G., Evans, R. L., & Eaton, D. W. (2009). Velocity-conductivity relationships for mantle mineral assemblages in archean cratonic lithosphere based on a review of laboratory data and hashin-shtrikman extremal bounds. Lithos, 109(1–2), 131–143.CrossRef Jones, A. G., Evans, R. L., & Eaton, D. W. (2009). Velocity-conductivity relationships for mantle mineral assemblages in archean cratonic lithosphere based on a review of laboratory data and hashin-shtrikman extremal bounds. Lithos, 109(1–2), 131–143.CrossRef
4.
Zurück zum Zitat Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef Gist, G. A. (1994). Fluid effects on velocity and attenuation in sandstones. The Journal of the Acoustical Society of America, 96(2), 1158–1173.CrossRef
5.
Zurück zum Zitat James Jr, S. W. (1981). Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. Journal of Geophysical Research, 86(B3), 1803–1812.CrossRef James Jr, S. W. (1981). Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. Journal of Geophysical Research, 86(B3), 1803–1812.CrossRef
6.
Zurück zum Zitat Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research, 107(B12), 2360.CrossRef Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research, 107(B12), 2360.CrossRef
7.
Zurück zum Zitat Jackson, I., Faul, U. H., Fitz Gerald, J. D., & Tan, B. H. (2004). Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. specimen fabrication and mechanical testing. Journal of Geophysical Research, 109(B6), B06201.CrossRef Jackson, I., Faul, U. H., Fitz Gerald, J. D., & Tan, B. H. (2004). Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. specimen fabrication and mechanical testing. Journal of Geophysical Research, 109(B6), B06201.CrossRef
8.
Zurück zum Zitat Dobson, D., Ammann, M., & Tackley, P. (2012). The grain size of the lower mantle. Proceeding of European Mineralogical Conference, Vol. 1, p. 403. Dobson, D., Ammann, M., & Tackley, P. (2012). The grain size of the lower mantle. Proceeding of European Mineralogical Conference, Vol. 1, p. 403.
9.
Zurück zum Zitat Priestley, K., & McKenzie, D. (2006). The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244(1–2), 285–301.CrossRef Priestley, K., & McKenzie, D. (2006). The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244(1–2), 285–301.CrossRef
10.
Zurück zum Zitat Karato, S.-I., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3—-4), 193–207.CrossRef Karato, S.-I., & Jung, H. (1998). Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters, 157(3—-4), 193–207.CrossRef
11.
Zurück zum Zitat Sato, H., Sacks, I. S., Murase, T., Muncill, G., & Fukuyama, H. (1989). Qp-melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle. Journal of Geophysical Research, 94(B8), 10,661–10,647.CrossRef Sato, H., Sacks, I. S., Murase, T., Muncill, G., & Fukuyama, H. (1989). Qp-melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle. Journal of Geophysical Research, 94(B8), 10,661–10,647.CrossRef
12.
Zurück zum Zitat Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the andrade model for viscoelastic rheology. Journal of Geophysical Research, 103(B11), 27,267–27,279.CrossRef Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the andrade model for viscoelastic rheology. Journal of Geophysical Research, 103(B11), 27,267–27,279.CrossRef
13.
Zurück zum Zitat White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3—-4), 300–312.CrossRef White, R. S., Drew, J., Martens, H. R., Key, J., Soosalu, H., & Jakobsdóttir, S. S. (2011). Dynamics of dyke intrusion in the mid-crust of iceland. Earth and Planetary Science Letters, 304(3—-4), 300–312.CrossRef
14.
Zurück zum Zitat Halász, Z., Timár, G., & Kun, F. (2010). The effect of disorder on crackling noise in fracture phenomena. Progress of Theoretical Physics Supplement, 184, 385–399.CrossRef Halász, Z., Timár, G., & Kun, F. (2010). The effect of disorder on crackling noise in fracture phenomena. Progress of Theoretical Physics Supplement, 184, 385–399.CrossRef
15.
Zurück zum Zitat King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef King, M. S. (1966). Wave velocities in rocks as a function of changes in overburden pressure and pore fluid saturants. Geophysics, 31(1), 50–73.CrossRef
16.
Zurück zum Zitat Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef Nur, A. M., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Technical Program Expanded Abstracts, 14(1), 878–881.CrossRef
17.
Zurück zum Zitat Hooke, R. (1678). de potentia restitutiva. London: John Martyn Printer. Hooke, R. (1678). de potentia restitutiva. London: John Martyn Printer.
18.
Zurück zum Zitat Cowin, S. C. (1989). Properties of the anisotropic elasticity tensor. The Quarterly Journal of Mechanics and Applied Mathematics, 42(2), 249–266.CrossRef Cowin, S. C. (1989). Properties of the anisotropic elasticity tensor. The Quarterly Journal of Mechanics and Applied Mathematics, 42(2), 249–266.CrossRef
19.
Zurück zum Zitat Lovett, D. R. (1999). Tensor properties of crystals (2nd ed.). Bristol: Institute of Physics Publishing. Lovett, D. R. (1999). Tensor properties of crystals (2nd ed.). Bristol: Institute of Physics Publishing.
20.
Zurück zum Zitat Nye, J. (1985). Physical properties of crystals: Their representation by tensors and matrices. New York: Oxford University Press. Nye, J. (1985). Physical properties of crystals: Their representation by tensors and matrices. New York: Oxford University Press.
21.
Zurück zum Zitat Christensen, N. I. (1982). Seismic velocities, volume II (pp. 1–228). Boca Raton: CRC Press. Christensen, N. I. (1982). Seismic velocities, volume II (pp. 1–228). Boca Raton: CRC Press.
22.
Zurück zum Zitat Crampin, S., & Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the earth’s crust and common fallacies in interpretation. Wave Motion, 45(6), 675–722.CrossRef Crampin, S., & Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the earth’s crust and common fallacies in interpretation. Wave Motion, 45(6), 675–722.CrossRef
23.
Zurück zum Zitat Crampin, S. (1999). Calculable fluid-rock interactions. Journal of the Geological Society, 156(3), 501–514.CrossRef Crampin, S. (1999). Calculable fluid-rock interactions. Journal of the Geological Society, 156(3), 501–514.CrossRef
24.
Zurück zum Zitat Voigt, W. (1892). Ueber innere reibung fester körper, insbesondere der metalle. Annalen der Physik, 283(12), 671–693.CrossRef Voigt, W. (1892). Ueber innere reibung fester körper, insbesondere der metalle. Annalen der Physik, 283(12), 671–693.CrossRef
25.
Zurück zum Zitat Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. New York: Academic Press. Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. New York: Academic Press.
26.
Zurück zum Zitat Schaller, R., Fantozzi, G., & Gremaud, G. (2001). Mechanical spectroscopy \(Q{^{-1}}\) 2001: With applications to materials science. Materials science forum. Switzerland: Trans Tech Publications. Schaller, R., Fantozzi, G., & Gremaud, G. (2001). Mechanical spectroscopy \(Q{^{-1}}\) 2001: With applications to materials science. Materials science forum. Switzerland: Trans Tech Publications.
27.
Zurück zum Zitat Debye, P. (1912). Einige resultate einer kinetischen theorie der isolatoren. Physikalische Zeitschrift, 13, 97–100. Debye, P. (1912). Einige resultate einer kinetischen theorie der isolatoren. Physikalische Zeitschrift, 13, 97–100.
28.
Zurück zum Zitat Landau, L. D., & Lifshitz, E. M. (1985). Statistical physics (3rd ed.). Oxford: Butterworth-Heinemann. Landau, L. D., & Lifshitz, E. M. (1985). Statistical physics (3rd ed.). Oxford: Butterworth-Heinemann.
29.
Zurück zum Zitat Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4), 341–351.CrossRef Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4), 341–351.CrossRef
30.
Zurück zum Zitat Fuoss, R. M., & Kirkwood, J. G. (1941). Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems*. Journal of the American Chemical Society, 63(2), 385–394.CrossRef Fuoss, R. M., & Kirkwood, J. G. (1941). Electrical properties of solids. VIII. Dipole moments in polyvinyl chloride-diphenyl systems*. Journal of the American Chemical Society, 63(2), 385–394.CrossRef
31.
Zurück zum Zitat McCrum, N. G., Read, B. E., & Williams, G. (1967). Anelastic and dielectric effects in polymeric solids. New York: Dover Publications Inc. McCrum, N. G., Read, B. E., & Williams, G. (1967). Anelastic and dielectric effects in polymeric solids. New York: Dover Publications Inc.
32.
Zurück zum Zitat Schoeck, G., Bisogni, E., & Shyne, J. (1964). The activation energy of high temperature internal friction. Acta Metallurgica, 12(12), 1466–1468.CrossRef Schoeck, G., Bisogni, E., & Shyne, J. (1964). The activation energy of high temperature internal friction. Acta Metallurgica, 12(12), 1466–1468.CrossRef
33.
Zurück zum Zitat Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Akademie der Wissenschaften in Wien Mathematisch-naturwissenschaftliche Klasse Abteilung, 132, 105–124. Terzaghi, K. (1923). Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen. Akademie der Wissenschaften in Wien Mathematisch-naturwissenschaftliche Klasse Abteilung, 132, 105–124.
34.
Zurück zum Zitat Rendulic, L. (1936). Porenziffer und porenwasserdrunk in tonen. Der Bauingenieur, 17, 559–564. Rendulic, L. (1936). Porenziffer und porenwasserdrunk in tonen. Der Bauingenieur, 17, 559–564.
35.
Zurück zum Zitat Biot, M. A. (1935). Le problème de la consolidation des matières argileuses sous une charge. Annales de la Societe Scientifique de Bruxelles, B55, 110–113. Biot, M. A. (1935). Le problème de la consolidation des matières argileuses sous une charge. Annales de la Societe Scientifique de Bruxelles, B55, 110–113.
36.
Zurück zum Zitat Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.CrossRef Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.CrossRef
37.
Zurück zum Zitat Detournay, E. and Cheng, A. H. D. (1993). Fundamentals of poroelasticity, volume II, chapter 5, (pp. 113–171). Oxford: Pergamon Press. Detournay, E. and Cheng, A. H. D. (1993). Fundamentals of poroelasticity, volume II, chapter 5, (pp. 113–171). Oxford: Pergamon Press.
38.
Zurück zum Zitat Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2), 227–241.CrossRef Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics, 14(2), 227–241.CrossRef
39.
Zurück zum Zitat Skempton, A. W. (1954). The pore-pressure coefficients a and b. Géotechnique, 4(4), 143–147.CrossRef Skempton, A. W. (1954). The pore-pressure coefficients a and b. Géotechnique, 4(4), 143–147.CrossRef
40.
Zurück zum Zitat Nautiyal, B. D. (2001). Introduction to Structural Analysis. New Delhi: New Age International. Nautiyal, B. D. (2001). Introduction to Structural Analysis. New Delhi: New Age International.
41.
Zurück zum Zitat Gassmann, F. (1951a). Elastic waves through a packing of spheres. Geophysics, 16(4), 673–685.CrossRef Gassmann, F. (1951a). Elastic waves through a packing of spheres. Geophysics, 16(4), 673–685.CrossRef
42.
Zurück zum Zitat Carroll, M. M., & Katsube, N. (1983). The role of terzaghi effective stress in linearly elastic deformation. Journal of Energy Resources Technology, 105(4), 509–511.CrossRef Carroll, M. M., & Katsube, N. (1983). The role of terzaghi effective stress in linearly elastic deformation. Journal of Energy Resources Technology, 105(4), 509–511.CrossRef
43.
Zurück zum Zitat Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef Salje, E. K. H., Koppensteiner, J., Schranz, W., & Fritsch, E. (2010). Elastic instabilities in dry, mesoporous minerals and their relevance to geological applications. Mineralogical Magazine, 74(2), 341–350.CrossRef
44.
Zurück zum Zitat Zimmerman, R. W., Somerton, W. H., & King, M. S. (1986). Compressibility of porous rocks. Journal of Geophysical Research, 91(B12), 12765–12777.CrossRef Zimmerman, R. W., Somerton, W. H., & King, M. S. (1986). Compressibility of porous rocks. Journal of Geophysical Research, 91(B12), 12765–12777.CrossRef
Metadaten
Titel
Introduction
verfasst von
Su-Ying Chien
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-03098-2_1