Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microfluidic biochips have emerged as powerful and reliable toolkits for biotechnology applications, such as chemical synthesis, the diagnosis of diseases, and the development of new drugs [1–3]. Nanoliter and picoliter volumes of biological samples can be manipulated on microfluidic devices under software control. Compared to conventional devices and analyzers, microfluidic devices offer many unique advantages.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”, Microfluidic and Nanofluidic, vol. 3, pp. 245–281, 2007.CrossRef R. Fair, “Digital microfluidics: is a true lab-on-a-chip possible?”, Microfluidic and Nanofluidic, vol. 3, pp. 245–281, 2007.CrossRef
2.
Zurück zum Zitat H. Becker, “Microfluidics: a technology coming of age”, Medical Device Technology, vol. 19, 2008. H. Becker, “Microfluidics: a technology coming of age”, Medical Device Technology, vol. 19, 2008.
3.
Zurück zum Zitat R. Fair, A. Khlystov, T. Tailor, V. Ivanov, R. Evans, P. Griffin, V. Srinivasan, V. Pamula, M. Pollack, and J. Zhou, “Chemical and biological applications of digital-microfluidic devices”, IEEE Design & Test of Computers, vol. 24, pp. 10–24, 2007.CrossRef R. Fair, A. Khlystov, T. Tailor, V. Ivanov, R. Evans, P. Griffin, V. Srinivasan, V. Pamula, M. Pollack, and J. Zhou, “Chemical and biological applications of digital-microfluidic devices”, IEEE Design & Test of Computers, vol. 24, pp. 10–24, 2007.CrossRef
4.
Zurück zum Zitat F. Su, K. Chakrabarty and R. B. Fair, “Microfluidics-based biochips: technology issues, implementation platforms, and design automation challenges”, IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, vol. 25, pp. 211–223, February 2006.CrossRef F. Su, K. Chakrabarty and R. B. Fair, “Microfluidics-based biochips: technology issues, implementation platforms, and design automation challenges”, IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, vol. 25, pp. 211–223, February 2006.CrossRef
5.
Zurück zum Zitat K. Chakrabarty, R. Fair and J. Zeng, “Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore”, IEEE Trans. CAD, vol. 29, pp. 1001–1017, 2010.CrossRef K. Chakrabarty, R. Fair and J. Zeng, “Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore”, IEEE Trans. CAD, vol. 29, pp. 1001–1017, 2010.CrossRef
6.
Zurück zum Zitat H.-C. Chang, and L. Yeo, Electrokinetically Driven Microfluidics and Nanofluidics”, New York, NY: Cambridge University Press, 2009. H.-C. Chang, and L. Yeo, Electrokinetically Driven Microfluidics and Nanofluidics”, New York, NY: Cambridge University Press, 2009.
9.
Zurück zum Zitat P. Marcoux, M. Dupoy, R. Mathey, A. Novelli-Rousseau, V. Heran, S. Moralesa, F. Riveraa, P. Joly, J. Moy, and F. Mallard, “Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration”, Colloids and surfaces A:Physicochemical and engineering aspects, vol. 377, no 1–3, pp. 54–62, 2011.CrossRef P. Marcoux, M. Dupoy, R. Mathey, A. Novelli-Rousseau, V. Heran, S. Moralesa, F. Riveraa, P. Joly, J. Moy, and F. Mallard, “Micro-confinement of bacteria into w/o emulsion droplets for rapid detection and enumeration”, Colloids and surfaces A:Physicochemical and engineering aspects, vol. 377, no 1–3, pp. 54–62, 2011.CrossRef
11.
Zurück zum Zitat B. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, New York, NY: Cambridge University Press, 2010.CrossRef B. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, New York, NY: Cambridge University Press, 2010.CrossRef
12.
Zurück zum Zitat R. Tadmor, “Line energy and the relation between advancing, receding and Young contact angles”, Langmuir, Volumne 20, Issue 18, pp. 7659–7664, 2004. R. Tadmor, “Line energy and the relation between advancing, receding and Young contact angles”, Langmuir, Volumne 20, Issue 18, pp. 7659–7664, 2004.
13.
Zurück zum Zitat P.-G. Gennes, F. Brochard-Wyart, and D. Quere, Capillary and Wetting Phenomena - Drops, Bubbles, Pearls, Waves, New York, NY: Springer Press, 2004.CrossRef P.-G. Gennes, F. Brochard-Wyart, and D. Quere, Capillary and Wetting Phenomena - Drops, Bubbles, Pearls, Waves, New York, NY: Springer Press, 2004.CrossRef
14.
Zurück zum Zitat D. Woodruff, The Chemical Physics of Solid Surfaces, Amsterdam, Netherlands: Elsevier, 2002. D. Woodruff, The Chemical Physics of Solid Surfaces, Amsterdam, Netherlands: Elsevier, 2002.
15.
Zurück zum Zitat F. Saeki, J. Baum, H. Moon, J. Yoon, C.-J. Kim, and R. Garrell, Polym, “Electrowetting on dielectrics (EWOD): reducing voltage requirements for microfluidics mater”, Sci. Eng, Issue 85, pp. 12–13, 2001. F. Saeki, J. Baum, H. Moon, J. Yoon, C.-J. Kim, and R. Garrell, Polym, “Electrowetting on dielectrics (EWOD): reducing voltage requirements for microfluidics mater”, Sci. Eng, Issue 85, pp. 12–13, 2001.
16.
Zurück zum Zitat J. Reed and K. Guthe, College Physics, Charleston, SC: Nabu Press, 2010 J. Reed and K. Guthe, College Physics, Charleston, SC: Nabu Press, 2010
17.
Zurück zum Zitat M. Pollack, R. Fair, and A. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys Lett, vol. 77, pp. 1725–1727, 2000.CrossRef M. Pollack, R. Fair, and A. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications”, Appl. Phys Lett, vol. 77, pp. 1725–1727, 2000.CrossRef
18.
Zurück zum Zitat J. Lee, H. Moon J. Fowler, C.-J Kim and T. Schoellhammer, “Addressable micro liquid handling by electric control of surface tension”, Proc. of 2001 IEEE 14th International Conference on MEMS, pp. 499–502, 2001. J. Lee, H. Moon J. Fowler, C.-J Kim and T. Schoellhammer, “Addressable micro liquid handling by electric control of surface tension”, Proc. of 2001 IEEE 14th International Conference on MEMS, pp. 499–502, 2001.
19.
Zurück zum Zitat S.-K. Cho et. al., “Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation”, IEEE International Conference on Micro Electro Mechanical Systems, pp. 454–461, 2002. S.-K. Cho et. al., “Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation”, IEEE International Conference on Micro Electro Mechanical Systems, pp. 454–461, 2002.
20.
Zurück zum Zitat R. Fair, A. Khlystov, V. Srinivasan, V. Pamula, and K. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform”, Proceedings of SPIE, volume 5591, Issue 8, page 113–124, 2004.CrossRef R. Fair, A. Khlystov, V. Srinivasan, V. Pamula, and K. Weaver, “Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform”, Proceedings of SPIE, volume 5591, Issue 8, page 113–124, 2004.CrossRef
22.
Zurück zum Zitat T. Xu and K. Chakrabarty, “Functional testing of digital microfluidic biochips”, Proc. IEEE International Test Conference, pp. 1–10, 2007. T. Xu and K. Chakrabarty, “Functional testing of digital microfluidic biochips”, Proc. IEEE International Test Conference, pp. 1–10, 2007.
23.
Zurück zum Zitat H. Ren, V. Srinivasan, and R. Fair, “Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution”, International Conference on Solid-State Sensors, Actuators and Microsystems, Volume 1, pp. 619–622, 2003. H. Ren, V. Srinivasan, and R. Fair, “Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution”, International Conference on Solid-State Sensors, Actuators and Microsystems, Volume 1, pp. 619–622, 2003.
24.
Zurück zum Zitat I. Nad, H. Yang, P. Park, and A. Wheeler, “Digital microfluidics for cell-based assays”, Lab Chip, Volume 8, Issue 4, pp. 519–526, 2008.CrossRef I. Nad, H. Yang, P. Park, and A. Wheeler, “Digital microfluidics for cell-based assays”, Lab Chip, Volume 8, Issue 4, pp. 519–526, 2008.CrossRef
25.
Zurück zum Zitat Y.-Y. Lin, R. Evans, E. Welch, B.-N. Hsu, A. Madison, and R. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators”, Sensors and Actuators, B: Chemical, vol. 105, pp. 465–470, 2010. Y.-Y. Lin, R. Evans, E. Welch, B.-N. Hsu, A. Madison, and R. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators”, Sensors and Actuators, B: Chemical, vol. 105, pp. 465–470, 2010.
26.
Zurück zum Zitat V. Pamula, P. Paik, J. Venkatraman, M. Pollack, and R. Fair, “Microfluidic electrowetting-based droplet mixing”, IEEE MEMS Conference Proceedings, pp. 8–10, 2001. V. Pamula, P. Paik, J. Venkatraman, M. Pollack, and R. Fair, “Microfluidic electrowetting-based droplet mixing”, IEEE MEMS Conference Proceedings, pp. 8–10, 2001.
27.
Zurück zum Zitat P. Paik, V. Pamula, and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef P. Paik, V. Pamula, and R. Fair, “Rapid droplet mixers for digital microfluidic systems”, Lab on a Chip, vol. 3, pp. 253–259, 2003.CrossRef
28.
Zurück zum Zitat M. Pollack, Electrowetting-based Microactuation of Droplets for Digital Microfluidics, PhD Thesis, Duke University, Durham, NC, 2001. M. Pollack, Electrowetting-based Microactuation of Droplets for Digital Microfluidics, PhD Thesis, Duke University, Durham, NC, 2001.
29.
Zurück zum Zitat T.-Y. Ho, K. Chakrabarty and P. Pop, “Digital microfluidic biochips: Recent research and emerging challenges”, Proc. IEEE CODES+ISSS, 2011. T.-Y. Ho, K. Chakrabarty and P. Pop, “Digital microfluidic biochips: Recent research and emerging challenges”, Proc. IEEE CODES+ISSS, 2011.
30.
Zurück zum Zitat J. Gao, X. Liu, T. Chen, P.-I. Mak, Y. Du, M. Vai, B. Lin, and R. Martins, “An intelligent digital microfluidic system with fuzzy enhanced feedback for multi-droplet manipulation”, Lab on a Chip, Issue 13, volume 13, 2013. J. Gao, X. Liu, T. Chen, P.-I. Mak, Y. Du, M. Vai, B. Lin, and R. Martins, “An intelligent digital microfluidic system with fuzzy enhanced feedback for multi-droplet manipulation”, Lab on a Chip, Issue 13, volume 13, 2013.
31.
Zurück zum Zitat H. Dutton, Understanding Optical Communications, Upper Saddle River, New Jersey: Prentice Hall Press, 1998. H. Dutton, Understanding Optical Communications, Upper Saddle River, New Jersey: Prentice Hall Press, 1998.
32.
Zurück zum Zitat N. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler II, “Progress in chip-scale photonic sensing”, IEEE Trans. Biomedical Circuits and Sys., vol. 3, pp. 202–211, 2009.CrossRef N. Jokerst, L. Luan, S. Palit, M. Royal, S. Dhar, M. Brooke, and T. Tyler II, “Progress in chip-scale photonic sensing”, IEEE Trans. Biomedical Circuits and Sys., vol. 3, pp. 202–211, 2009.CrossRef
33.
Zurück zum Zitat R. Evans et. al., “Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors Conf., pp. 423–426, Oct. 2007. R. Evans et. al., “Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform”, Proc. IEEE Sensors Conf., pp. 423–426, Oct. 2007.
34.
Zurück zum Zitat F. Su, S. Ozev and K. Chakrabarty, “Ensuring the operational health of droplet-based microelectrofluidic biosensor systems”, IEEE Sensors, vol. 5, pp. 763–773, August 2005.CrossRef F. Su, S. Ozev and K. Chakrabarty, “Ensuring the operational health of droplet-based microelectrofluidic biosensor systems”, IEEE Sensors, vol. 5, pp. 763–773, August 2005.CrossRef
35.
Zurück zum Zitat K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty and R. Fair, “Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips”, Proc. IEEE/ACM Design, Automation and Test in Europe (DATE) Conference, pp. 559–564, 2013. K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty and R. Fair, “Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips”, Proc. IEEE/ACM Design, Automation and Test in Europe (DATE) Conference, pp. 559–564, 2013.
36.
Zurück zum Zitat D. Tommasini, “Dielectric insulation and high-voltage issues”, arXiv:1104.0802v1, 2011. D. Tommasini, “Dielectric insulation and high-voltage issues”, arXiv:1104.0802v1, 2011.
37.
Zurück zum Zitat K. Bohringer, “Modeling and controlling parallel tasks in droplet-based microfluidic systems”, IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, vol. 2, pp. 329–339, 2006. K. Bohringer, “Modeling and controlling parallel tasks in droplet-based microfluidic systems”, IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems, vol. 2, pp. 329–339, 2006.
38.
Zurück zum Zitat P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of digital microfluidic biochips using the T-tree formulation”, Proc. IEEE/ACM Design Automation Conference, pp. 931–934, 2006. P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Placement of digital microfluidic biochips using the T-tree formulation”, Proc. IEEE/ACM Design Automation Conference, pp. 931–934, 2006.
39.
Zurück zum Zitat M. Cho and D. Z. Pan, “A high-performance droplet router for digital microfluidic biochips”, Proc. ACM International Symposium on Physical Design, pp. 1714–1724, 2008. M. Cho and D. Z. Pan, “A high-performance droplet router for digital microfluidic biochips”, Proc. ACM International Symposium on Physical Design, pp. 1714–1724, 2008.
40.
Zurück zum Zitat T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet routing algorithm for the synthesis of digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1682–1695, 2010.CrossRef T.-W. Huang, C.-H. Lin, and T.-Y. Ho, “A contamination aware droplet routing algorithm for the synthesis of digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, no. 11, pp. 1682–1695, 2010.CrossRef
41.
Zurück zum Zitat K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques, Boca Raton, FL: CRC Press, 2006.CrossRef K. Chakrabarty and F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques, Boca Raton, FL: CRC Press, 2006.CrossRef
42.
Zurück zum Zitat T. Xu and K. Chakrabarty, “Integrated droplet routing in the synthesis of microfluidic biochips”, Proc. IEEE/ACM Design Automation Conference, pp. 948–953, 2007. T. Xu and K. Chakrabarty, “Integrated droplet routing in the synthesis of microfluidic biochips”, Proc. IEEE/ACM Design Automation Conference, pp. 948–953, 2007.
43.
Zurück zum Zitat T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips”, Proc. IEEE/ACM Design Automation Conference, pp. 173–178, 2008. T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips”, Proc. IEEE/ACM Design Automation Conference, pp. 173–178, 2008.
44.
Zurück zum Zitat Y. Zhao and K. Chakrabarty, “Simultaneous optimization of droplet routing and control-pin mapping to electrodes in digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, pp. 242–254, February 2012.CrossRef Y. Zhao and K. Chakrabarty, “Simultaneous optimization of droplet routing and control-pin mapping to electrodes in digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, pp. 242–254, February 2012.CrossRef
45.
Zurück zum Zitat D. Grissom and P. Brisk, “Fast online synthesis of generally programmable digital microfluidic biochips”, Proc. CODES+ISSS, pp. 413–422, 2012. D. Grissom and P. Brisk, “Fast online synthesis of generally programmable digital microfluidic biochips”, Proc. CODES+ISSS, pp. 413–422, 2012.
46.
Zurück zum Zitat F. Su, S. Ozev, K. Chakrabarty, “Test planning and test resource optimization for droplet-based microfluidic systems”, Journal of Electronic Testing: Theory and Applications, Volume 22 Issue 2, pp. 199–210, April 2006.CrossRef F. Su, S. Ozev, K. Chakrabarty, “Test planning and test resource optimization for droplet-based microfluidic systems”, Journal of Electronic Testing: Theory and Applications, Volume 22 Issue 2, pp. 199–210, April 2006.CrossRef
47.
Zurück zum Zitat D. Mitra, S. Ghoshal, H. Rahaman, K. Chakrabarty, and B. Bhattacharya, “On-line error detection in digital microfluidic biochips”, Proc. IEEE Asian Test Symposium, pp. 332–337, 2012. D. Mitra, S. Ghoshal, H. Rahaman, K. Chakrabarty, and B. Bhattacharya, “On-line error detection in digital microfluidic biochips”, Proc. IEEE Asian Test Symposium, pp. 332–337, 2012.
48.
Zurück zum Zitat Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and error recovery in digital microfluidic lab-on-chip”, ACM JETC, Vol. 6, No. 3, Article 11, 2010. Y. Zhao, T. Xu, and K. Chakrabarty, “Integrated control-path design and error recovery in digital microfluidic lab-on-chip”, ACM JETC, Vol. 6, No. 3, Article 11, 2010.
49.
Zurück zum Zitat V. Srinivasan, V. Pamula, and R. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab on a Chip, vol. 4, pp. 310–315, 2004.CrossRef V. Srinivasan, V. Pamula, and R. Fair, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids”, Lab on a Chip, vol. 4, pp. 310–315, 2004.CrossRef
50.
Zurück zum Zitat Z. Xiao and E. Young, “CrossRouter: A droplet router for cross-referencing digital microfluidic biochips”, IEEE/ACM Asia South Pacific Design Automation Conference, pp. 269–274, 2010. Z. Xiao and E. Young, “CrossRouter: A droplet router for cross-referencing digital microfluidic biochips”, IEEE/ACM Asia South Pacific Design Automation Conference, pp. 269–274, 2010.
51.
Zurück zum Zitat C.-Y. Lin and Y.-W. Chang, “Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, Issue 6, pp. 817–828, 2011.CrossRefMathSciNet C.-Y. Lin and Y.-W. Chang, “Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, Issue 6, pp. 817–828, 2011.CrossRefMathSciNet
52.
Zurück zum Zitat S.-K. Fan, C. Hashi, C.-J. Kim, “Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging”, IEEE International Conference on Micro Electro Mechanical Systems, pp. 694–697, 2003. S.-K. Fan, C. Hashi, C.-J. Kim, “Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging”, IEEE International Conference on Micro Electro Mechanical Systems, pp. 694–697, 2003.
53.
Zurück zum Zitat H.C. Yeung and F.Y. Young, “General purpose cross-referencing Microfluidic Biochip with reduced pin-count”, Asia and South Pacific Design Automation Conference, pp. 238–243, 2014. H.C. Yeung and F.Y. Young, “General purpose cross-referencing Microfluidic Biochip with reduced pin-count”, Asia and South Pacific Design Automation Conference, pp. 238–243, 2014.
54.
Zurück zum Zitat T. A. Dinh, S. Yamashita, and T.-Y. Ho, “A logic integrated optimal pin-count design for digital microfluidic biochips”, Proceedings of the conference on Design, Automation & Test in Europe, pp. 1–6, 2014. T. A. Dinh, S. Yamashita, and T.-Y. Ho, “A logic integrated optimal pin-count design for digital microfluidic biochips”, Proceedings of the conference on Design, Automation & Test in Europe, pp. 1–6, 2014.
55.
Zurück zum Zitat T.-W. Huang, J.-W. Chang, and T.-Y. Ho, “Integrated fluidic-chip co-design methodology for digital microfluidic biochips”, Proceedings of ACM International Symposium on Physical Design, pp. 49–56, 2012. T.-W. Huang, J.-W. Chang, and T.-Y. Ho, “Integrated fluidic-chip co-design methodology for digital microfluidic biochips”, Proceedings of ACM International Symposium on Physical Design, pp. 49–56, 2012.
Metadaten
Titel
Introduction
verfasst von
Yan Luo
Krishnendu Chakrabarty
Tsung-Yi Ho
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09006-1_1

Neuer Inhalt