Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Ruhong Zhou

Erschienen in: Modeling of Nanotoxicity

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ability to synthesize molecular superstructures with dimensions on the order of a few to hundreds of nanometers gave birth to the now vast fields of nanoscience and nanotechnology. Since the first synthesis of fullerene C60 in 1985 [1, 2], technical advances in the characterization and manufacture of nanomaterials (NMs) and nanoparticles (NPs) have allowed such nanoscale structures to transcend the basic sciences and permeate everyday life [3].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckmisnterfulleren. Nature 318:162–163CrossRef Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckmisnterfulleren. Nature 318:162–163CrossRef
2.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
3.
Zurück zum Zitat Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48:7752–7777 Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48:7752–7777
4.
Zurück zum Zitat Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470 Noon WH, Kong Y, Ma J (2002) Molecular dynamics analysis of a buckyball-antibody complex. Proc Natl Acad Sci USA 99(Suppl 2):6466–6470
5.
Zurück zum Zitat Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29 Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2:18–29
6.
Zurück zum Zitat Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon NY 44:1034–1047 Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon NY 44:1034–1047
7.
Zurück zum Zitat Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589 Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589
8.
Zurück zum Zitat Mahmoudi M, Azadmanesh K., Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432 Mahmoudi M, Azadmanesh K., Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432
9.
Zurück zum Zitat Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466 Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466
10.
Zurück zum Zitat Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55CrossRef Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55CrossRef
11.
Zurück zum Zitat Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571 Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571
12.
Zurück zum Zitat Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1:313–316 Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1:313–316
13.
Zurück zum Zitat Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557 Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557
14.
Zurück zum Zitat Shvedova AA et al (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol Ther 121:192–204 Shvedova AA et al (2009) Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol Ther 121:192–204
15.
Zurück zum Zitat Suh WH, Suslick KS, Stucky GD, Suh Y-H (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170 Suh WH, Suslick KS, Stucky GD, Suh Y-H (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170
16.
Zurück zum Zitat Sharifi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343 Sharifi S et al (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343
17.
Zurück zum Zitat Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654 Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654
18.
Zurück zum Zitat Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323 Hu W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323
19.
Zurück zum Zitat Wong-Ekkabut J et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368 Wong-Ekkabut J et al (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363–368
20.
Zurück zum Zitat Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583CrossRef Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5:579–583CrossRef
21.
Zurück zum Zitat Vaitheeswaran S, Garcia AE (2011) Protein stability at a carbon nanotube interface. J Chem Phys 134:125101 Vaitheeswaran S, Garcia AE (2011) Protein stability at a carbon nanotube interface. J Chem Phys 134:125101
22.
Zurück zum Zitat Lynch I, Dawson K (2008) Protein-nanoparticle interactions. Nano Today 3:4047CrossRef Lynch I, Dawson K (2008) Protein-nanoparticle interactions. Nano Today 3:4047CrossRef
23.
Zurück zum Zitat Kang Y et al (2008) Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B 112:4801–4807 Kang Y et al (2008) Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. J Phys Chem B 112:4801–4807
24.
Zurück zum Zitat Shi B, Zuo G, Xiu P, Zhou R (2013) Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields. J Phys Chem B 117, 3541–3547 Shi B, Zuo G, Xiu P, Zhou R (2013) Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields. J Phys Chem B 117, 3541–3547
25.
Zurück zum Zitat Shen J-W, Wu T, Wang Q, Kang Y (2008) Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 29:3847–3855 Shen J-W, Wu T, Wang Q, Kang Y (2008) Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 29:3847–3855
26.
Zurück zum Zitat Gao H, Kong Y (2004) Simulation of Dna-Nanotube Interactions. Annu Rev Mater Res 34:123–150CrossRef Gao H, Kong Y (2004) Simulation of Dna-Nanotube Interactions. Annu Rev Mater Res 34:123–150CrossRef
27.
Zurück zum Zitat Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230 Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230
28.
Zurück zum Zitat Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine 4:261–275 Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine 4:261–275
29.
Zurück zum Zitat Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154 Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154
30.
Zurück zum Zitat Perdew J, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868CrossRef Perdew J, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868CrossRef
31.
Zurück zum Zitat Guerra CF, Snijders JG, Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391–403 Guerra CF, Snijders JG, Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391–403
32.
Zurück zum Zitat Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRef Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRef
33.
Zurück zum Zitat Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRef Duan Y et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012CrossRef
34.
Zurück zum Zitat Mackerell AD et al (1998) All-Atom empirical potential for molecular modeling and dynamics studies of protein. 5647:10–12 Mackerell AD et al (1998) All-Atom empirical potential for molecular modeling and dynamics studies of protein. 5647:10–12
35.
Zurück zum Zitat Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947CrossRef Ren P, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107:5933–5947CrossRef
36.
Zurück zum Zitat De Miranda Tomásio S, Walsh TR (2007) Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys 105:221–229 De Miranda Tomásio S, Walsh TR (2007) Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys 105:221–229
37.
Zurück zum Zitat Ueda Y, Taketomi H, Gō N (1978) Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme. Biopolymers 17:1531–1548CrossRef Ueda Y, Taketomi H, Gō N (1978) Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. Three-dimensional lattice model of lysozyme. Biopolymers 17:1531–1548CrossRef
38.
Zurück zum Zitat Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953 Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937–953
39.
Zurück zum Zitat Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824 Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824
40.
Zurück zum Zitat Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473 Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473
41.
Zurück zum Zitat Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168 Marrink SJ, de Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168
42.
Zurück zum Zitat Raffaini G, Ganazzoli F (2013) Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 29:4883–4893CrossRef Raffaini G, Ganazzoli F (2013) Surface topography effects in protein adsorption on nanostructured carbon allotropes. Langmuir 29:4883–4893CrossRef
43.
Zurück zum Zitat Ou L, Luo Y, Wei G (2011) Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. J Phys Chem B 115:9813–9822 Ou L, Luo Y, Wei G (2011) Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface. J Phys Chem B 115:9813–9822
44.
Zurück zum Zitat Balamurugan K, Subramanian V (2013) Length-dependent stability of α-helical peptide upon adsorption to single-walled carbon nanotube. Biopolymers 99:357–369 Balamurugan K, Subramanian V (2013) Length-dependent stability of α-helical peptide upon adsorption to single-walled carbon nanotube. Biopolymers 99:357–369
45.
Zurück zum Zitat Balamurugan K, Gopalakrishnan R, Raman SS, Subramanian V (2010) Exploring the changes in the structure of α-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B 114:14048–14058 Balamurugan K, Gopalakrishnan R, Raman SS, Subramanian V (2010) Exploring the changes in the structure of α-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. J Phys Chem B 114:14048–14058
46.
Zurück zum Zitat Gopalakrishnan R, Balamurugan K, Singam ERA, Sundaraman S, Subramanian V (2011) Adsorption of collagen onto single walled carbon nanotubes: a molecular dynamics investigation. Phys Chem Chem Phys 13:13046–13057 Gopalakrishnan R, Balamurugan K, Singam ERA, Sundaraman S, Subramanian V (2011) Adsorption of collagen onto single walled carbon nanotubes: a molecular dynamics investigation. Phys Chem Chem Phys 13:13046–13057
47.
Zurück zum Zitat Balamurugan K (2011) Effect of curvature on the α-helix breaking tendency of carbon based nanomaterials. J Phys Chem C 115:8886–8892CrossRef Balamurugan K (2011) Effect of curvature on the α-helix breaking tendency of carbon based nanomaterials. J Phys Chem C 115:8886–8892CrossRef
48.
Zurück zum Zitat Mao X et al (2009) Molecular-level evidence of the surface-induced transformation of peptide structures revealed by scanning tunneling microscopy. Langmuir 25:8849–8853CrossRef Mao X et al (2009) Molecular-level evidence of the surface-induced transformation of peptide structures revealed by scanning tunneling microscopy. Langmuir 25:8849–8853CrossRef
49.
Zurück zum Zitat Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115:23323–23328CrossRef Zuo G, Zhou X, Huang Q, Fang H, Zhou R (2011) Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity. J Phys Chem C 115:23323–23328CrossRef
50.
Zurück zum Zitat Ge C et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973CrossRef Ge C et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108:16968–16973CrossRef
51.
Zurück zum Zitat Tomásio S, Walsh T (2009) Modeling the binding affinity of peptides for graphitic surfaces. influences of aromatic content and interfacial shape. J Phys Chem C 113:8778–8785CrossRef Tomásio S, Walsh T (2009) Modeling the binding affinity of peptides for graphitic surfaces. influences of aromatic content and interfacial shape. J Phys Chem C 113:8778–8785CrossRef
52.
Zurück zum Zitat Walsh TR, Tomasio SM (2010) Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol Biosyst 6:1707–1718 Walsh TR, Tomasio SM (2010) Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol Biosyst 6:1707–1718
53.
Zurück zum Zitat Xie Y, Kong Y, Gao H, Soh AK(2007) Molecular dynamics simulation of polarizable carbon nanotubes. Comput Mater Sci 40:460–465 Xie Y, Kong Y, Gao H, Soh AK(2007) Molecular dynamics simulation of polarizable carbon nanotubes. Comput Mater Sci 40:460–465
54.
Zurück zum Zitat Yang Z, Wang Z, Tian X, Xiu P, Zhou R (2012) Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136:025103CrossRef Yang Z, Wang Z, Tian X, Xiu P, Zhou R (2012) Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations. J Chem Phys 136:025103CrossRef
55.
Zurück zum Zitat Wang L et al (2013) Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5:8384–8391 Wang L et al (2013) Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity. Nanoscale 5:8384–8391
56.
Zurück zum Zitat Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282 Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282
57.
Zurück zum Zitat Tiwari P, Vig K, Dennis V, Singh S (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63CrossRef Tiwari P, Vig K, Dennis V, Singh S (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63CrossRef
58.
Zurück zum Zitat Sarikaya M, Tamerler C, Jen A (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 25:577–585 Sarikaya M, Tamerler C, Jen A (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 25:577–585
59.
Zurück zum Zitat Wang L et al (2013) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135:17359–17368 Wang L et al (2013) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135:17359–17368
60.
Zurück zum Zitat Ahamed M, Alsalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848 Ahamed M, Alsalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848
61.
Zurück zum Zitat Kim K-J et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242 Kim K-J et al (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242
62.
Zurück zum Zitat Li R et al (2013) Computational and experimental characterizations of silver nanoparticle-apolipoprotein biocorona. J Phys Chem B 117:13451–13456 Li R et al (2013) Computational and experimental characterizations of silver nanoparticle-apolipoprotein biocorona. J Phys Chem B 117:13451–13456
63.
Zurück zum Zitat Ding F et al (2013) Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale 5:9162–9169 Ding F et al (2013) Direct observation of a single nanoparticle-ubiquitin corona formation. Nanoscale 5:9162–9169
64.
Zurück zum Zitat Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016 Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016
65.
Zurück zum Zitat Dabbousi BO et al (1997) (CdSe) ZnS Core—Shell quantum dots : synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 5647 Dabbousi BO et al (1997) (CdSe) ZnS Core—Shell quantum dots : synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 5647
66.
Zurück zum Zitat Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRef Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRef
67.
Zurück zum Zitat Chan WCW et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46 Chan WCW et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46
68.
Zurück zum Zitat Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRef Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRef
69.
Zurück zum Zitat Lovrić J et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 83:377–385 Lovrić J et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl) 83:377–385
70.
Zurück zum Zitat Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JMA (2013) DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005 Azpiroz JM, Matxain JM, Infante I, Lopez X, Ugalde JMA (2013) DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys Chem Chem Phys 15:10996–11005
71.
Zurück zum Zitat Gao Y, Kang S, Xin M, Zhou B, Yang P. Effect of Ligands on Characteristics of (CdSe) 13 Quantum Dot. Prep Gao Y, Kang S, Xin M, Zhou B, Yang P. Effect of Ligands on Characteristics of (CdSe) 13 Quantum Dot. Prep
72.
Zurück zum Zitat Kang S, Huynh T, Zhou R (2012) Non-destructive inhibition of metallofullerenol Gd@C82(OH)22 on WW domain: implication on signal transduction pathway. Sci Rep 2 Kang S, Huynh T, Zhou R (2012) Non-destructive inhibition of metallofullerenol Gd@C82(OH)22 on WW domain: implication on signal transduction pathway. Sci Rep 2
73.
Zurück zum Zitat Chen C et al (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057 Chen C et al (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057
74.
Zurück zum Zitat Kang S et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci USA 109:15431–15436CrossRef Kang S et al (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci USA 109:15431–15436CrossRef
75.
Zurück zum Zitat Pogodin S, Baulin V (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4:5293–5300CrossRef Pogodin S, Baulin V (2010) Can a carbon nanotube pierce through a phospholipid bilayer? ACS Nano 4:5293–5300CrossRef
76.
Zurück zum Zitat Tu Y et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601CrossRef Tu Y et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601CrossRef
Metadaten
Titel
Introduction
verfasst von
Ruhong Zhou
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15382-7_1

Neuer Inhalt