Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Jinshan Yue

Erschienen in: High Energy Efficiency Neural Network Processor with Combined Digital and Computing-in-Memory Architecture

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial Intelligence (AI) has promoted the development of modern society in many aspects [1], and will profoundly change human social life and the world [2].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The concepts and calculation methods of performance and OPS are detailed in Sect. 2.​2
 
Literatur
1.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRef
2.
Zurück zum Zitat The State Council of the People’s Republic of China (2017) Development plan for the new generation of artificial intelligence, no 35 The State Council of the People’s Republic of China (2017) Development plan for the new generation of artificial intelligence, no 35
3.
Zurück zum Zitat Dutton T (2018) An overview of national AI strategies Dutton T (2018) An overview of national AI strategies
4.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
5.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
7.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2014) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
8.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
9.
Zurück zum Zitat Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
10.
Zurück zum Zitat Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 6000–6010 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, pp 6000–6010
11.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, 27 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, 27
12.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489 Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489
13.
Zurück zum Zitat Ltd. Askci Consulting Co. (2020) 2020–2025 China’s artificial intelligence chip industry outlook forecast and market research report Ltd. Askci Consulting Co. (2020) 2020–2025 China’s artificial intelligence chip industry outlook forecast and market research report
14.
Zurück zum Zitat Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark analysis of representative deep neural network architectures. IEEE Access 6:64270–64277CrossRef Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark analysis of representative deep neural network architectures. IEEE Access 6:64270–64277CrossRef
15.
Zurück zum Zitat Niu W, Ma X, Lin S, Wang S, Qian X, Lin X, Wang Y, Ren B (2020) PATDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. In: Proceedings of the 25th international conference on architectural support for programming languages and operating systems, pp 907–922 Niu W, Ma X, Lin S, Wang S, Qian X, Lin X, Wang Y, Ren B (2020) PATDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. In: Proceedings of the 25th international conference on architectural support for programming languages and operating systems, pp 907–922
16.
18.
Zurück zum Zitat The 19th Central Committee of the Communist Party of China (2020) Proposal of the central committee of the communist party of China on formulating the 14th five year plan for national economic and social development and the long range goals for 2035. People’s Publishing House The 19th Central Committee of the Communist Party of China (2020) Proposal of the central committee of the communist party of China on formulating the 14th five year plan for national economic and social development and the long range goals for 2035. People’s Publishing House
19.
Zurück zum Zitat Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O (2014) DIANNAO: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: Proceedings of the 19th international conference on architectural support for programming languages and operating systems, pp 269–284 Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O (2014) DIANNAO: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In: Proceedings of the 19th international conference on architectural support for programming languages and operating systems, pp 269–284
20.
Zurück zum Zitat Chen Y-H, Krishna T, Emer J, Sze V (2016) 14.5 Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. In: 2016 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 262–264 Chen Y-H, Krishna T, Emer J, Sze V (2016) 14.5 Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. In: 2016 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 262–264
21.
Zurück zum Zitat Bang S, Wang J, Li Z, Cao G, Sylvester D (2017) 14.7 A 288 \(\upmu \)w programmable deep-learning processor with 270 kB on-chip weight storage using non-uniform memory hierarchy for mobile intelligence. In: 2017 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 250, 251 Bang S, Wang J, Li Z, Cao G, Sylvester D (2017) 14.7 A 288 \(\upmu \)w programmable deep-learning processor with 270 kB on-chip weight storage using non-uniform memory hierarchy for mobile intelligence. In: 2017 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 250, 251
22.
Zurück zum Zitat Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv:1606.06160 Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv:​1606.​06160
23.
Zurück zum Zitat Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: ImageNet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, pp 525–542 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: ImageNet classification using binary convolutional neural networks. In: European conference on computer vision. Springer, pp 525–542
24.
Zurück zum Zitat Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems, pp 1135–1143 Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems, pp 1135–1143
25.
Zurück zum Zitat Wei W, Wu C, Yandan W, Yiran C, Hai L (2016) Learning structured sparsity in deep neural networks. Adv Neural Inf Process Syst 29:2074–2082 Wei W, Wu C, Yandan W, Yiran C, Hai L (2016) Learning structured sparsity in deep neural networks. Adv Neural Inf Process Syst 29:2074–2082
26.
Zurück zum Zitat Mao H, Han S, Pool J, Li W, Liu X, Wang Y, Dally WJ (2017) Exploring the granularity of sparsity in convolutional neural networks, pp 13–20 Mao H, Han S, Pool J, Li W, Liu X, Wang Y, Dally WJ (2017) Exploring the granularity of sparsity in convolutional neural networks, pp 13–20
27.
Zurück zum Zitat Zhang T, Ye S, Zhang K, Tang J, Wen W, Fardad M, Wang Y (2018) A systematic DNN weight pruning framework using alternating direction method of multipliers. In: Proceedings of the European conference on computer vision (ECCV), pp 184–199 Zhang T, Ye S, Zhang K, Tang J, Wen W, Fardad M, Wang Y (2018) A systematic DNN weight pruning framework using alternating direction method of multipliers. In: Proceedings of the European conference on computer vision (ECCV), pp 184–199
28.
Zurück zum Zitat Ding C, Liao S, Wang Y, Li Z, Liu N, Zhuo Y, Wang C, Qian X, Bai Y, Yuan G et al (2017) CirCNN: accelerating and compressing deep neural networks using block-circulant weight matrices. In: Proceedings of the 50th annual IEEE/ACM international symposium on microarchitecture. ACM, pp 395–408 Ding C, Liao S, Wang Y, Li Z, Liu N, Zhuo Y, Wang C, Qian X, Bai Y, Yuan G et al (2017) CirCNN: accelerating and compressing deep neural networks using block-circulant weight matrices. In: Proceedings of the 50th annual IEEE/ACM international symposium on microarchitecture. ACM, pp 395–408
29.
Zurück zum Zitat Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017) 14.5 ENVISION: a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28 nm FDSOI. In: 2017 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–247 Moons B, Uytterhoeven R, Dehaene W, Verhelst M (2017) 14.5 ENVISION: a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28 nm FDSOI. In: 2017 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–247
30.
Zurück zum Zitat Lee J, Kim C, Kang S, Shin D, Kim S, Yoo H-J (2018) UNPU: A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 218–220 Lee J, Kim C, Kang S, Shin D, Kim S, Yoo H-J (2018) UNPU: A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 218–220
31.
Zurück zum Zitat Zhang S, Du Z, Zhang L, Lan H, Liu S, Li L, Guo Q, Chen T, Chen Y (2016) Cambricon-x: an accelerator for sparse neural networks. In: The 49th annual IEEE/ACM international symposium on microarchitecture. IEEE, p 20 Zhang S, Du Z, Zhang L, Lan H, Liu S, Li L, Guo Q, Chen T, Chen Y (2016) Cambricon-x: an accelerator for sparse neural networks. In: The 49th annual IEEE/ACM international symposium on microarchitecture. IEEE, p 20
32.
Zurück zum Zitat Jorge A, Patrick J, Tayler H, Tor A, Jerger NE, Moshovos A (2016) Ineffectual-neuron-free deep neural network computing. In: International symposium on computer architecture, Cnvlutin Jorge A, Patrick J, Tayler H, Tor A, Jerger NE, Moshovos A (2016) Ineffectual-neuron-free deep neural network computing. In: International symposium on computer architecture, Cnvlutin
33.
Zurück zum Zitat Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture (ISCA). IEEE, pp 243–254 Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA, Dally WJ (2016) EIE: efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture (ISCA). IEEE, pp 243–254
34.
Zurück zum Zitat Parashar A, Rhu M, Mukkara A, Puglielli A, Venkatesan R, Khailany B, Emer J, Keckler SW, Dally WJ (2017) SCNN: an accelerator for compressed-sparse convolutional neural networks. In: 2017 ACM/IEEE 44th annual international symposium on computer architecture (ISCA). IEEE, pp 27–40 Parashar A, Rhu M, Mukkara A, Puglielli A, Venkatesan R, Khailany B, Emer J, Keckler SW, Dally WJ (2017) SCNN: an accelerator for compressed-sparse convolutional neural networks. In: 2017 ACM/IEEE 44th annual international symposium on computer architecture (ISCA). IEEE, pp 27–40
35.
Zurück zum Zitat Zimmer B (2021) Emulating large machine learning accelerators with small research chips. In: IEEE international solid-state circuits conference (ISSCC) forum. IEEE Zimmer B (2021) Emulating large machine learning accelerators with small research chips. In: IEEE international solid-state circuits conference (ISSCC) forum. IEEE
36.
Zurück zum Zitat Kozyrakis CE, Perissakis S, Patterson D, Anderson T, Asanovic K, Cardwell N, Fromm R, Golbus J, Gribstad B, Keeton K et al (1997) Scalable processors in the billion-transistor era: IRAM. Computer 30(9):75–78 Kozyrakis CE, Perissakis S, Patterson D, Anderson T, Asanovic K, Cardwell N, Fromm R, Golbus J, Gribstad B, Keeton K et al (1997) Scalable processors in the billion-transistor era: IRAM. Computer 30(9):75–78
37.
Zurück zum Zitat Maya G, Bill H, Ken I (1995) Processing in memory: the terasys massively parallel PIM array. Computer 28(4):23–31 Maya G, Bill H, Ken I (1995) Processing in memory: the terasys massively parallel PIM array. Computer 28(4):23–31
38.
Zurück zum Zitat Elliott D, Stumm M, Snelgrove M (1997) Computational RAM: the case for SIMD computing in memory. In: Workshop on mixing logic and DRAM: chips that compute and remember at ISCA, vol 97 Elliott D, Stumm M, Snelgrove M (1997) Computational RAM: the case for SIMD computing in memory. In: Workshop on mixing logic and DRAM: chips that compute and remember at ISCA, vol 97
39.
Zurück zum Zitat Yamauchi T, Hammond L, Olukotun K (1997) A single chip multiprocessor integrated with DRAM. In: Workshop on mixing logic and DRAM, held at the 24th international symposium on computer architecture Yamauchi T, Hammond L, Olukotun K (1997) A single chip multiprocessor integrated with DRAM. In: Workshop on mixing logic and DRAM, held at the 24th international symposium on computer architecture
40.
Zurück zum Zitat Chang M-F, Wu C-W, Kuo C-C, Shen S-J, Lin K-F, Yang S-M, King Y-C, Lin C-J, Chih Y-D (2012) A 0.5 V 4 MB logic-process compatible embedded resistive RAM (ReRAM) in 65 nm CMOS using low-voltage current-mode sensing scheme with 45 ns random read time. In: 2012 IEEE international solid-state circuits conference. IEEE, pp 434–436 Chang M-F, Wu C-W, Kuo C-C, Shen S-J, Lin K-F, Yang S-M, King Y-C, Lin C-J, Chih Y-D (2012) A 0.5 V 4 MB logic-process compatible embedded resistive RAM (ReRAM) in 65 nm CMOS using low-voltage current-mode sensing scheme with 45 ns random read time. In: 2012 IEEE international solid-state circuits conference. IEEE, pp 434–436
41.
Zurück zum Zitat Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550):61–64 Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550):61–64
42.
Zurück zum Zitat Su F, Chen W-H, Xia L, Lo C-P, Tang T, Wang Z, Hsu K-H, Cheng M, Li J-Y, Xie Y et al (2017) A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory. In: 2017 symposium on VLSI technology. IEEE, pp T260–T261 Su F, Chen W-H, Xia L, Lo C-P, Tang T, Wang Z, Hsu K-H, Cheng M, Li J-Y, Xie Y et al (2017) A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory. In: 2017 symposium on VLSI technology. IEEE, pp T260–T261
43.
Zurück zum Zitat Chen W-H, Li K-X, Lin W-Y, Hsu K-H, Li P-Y, Yang C-H, Xue C-X, Yang E-Y, Chen Y-K, Chang Y-S et al (2018) A 65 nm 1 MB nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 494–496 Chen W-H, Li K-X, Lin W-Y, Hsu K-H, Li P-Y, Yang C-H, Xue C-X, Yang E-Y, Chen Y-K, Chang Y-S et al (2018) A 65 nm 1 MB nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 494–496
44.
Zurück zum Zitat Biswas A, Chandrakasan AP (2018) Conv-RAM: an energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 488–490 Biswas A, Chandrakasan AP (2018) Conv-RAM: an energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 488–490
45.
Zurück zum Zitat Khwa W-S, Chen J-J, Li J-F, Si X, Yang E-Y, Sun X, Liu R, Chen P-Y, Li Q, Yu S et al (2018) A 65 nm 4 kB algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 496–498 Khwa W-S, Chen J-J, Li J-F, Si X, Yang E-Y, Sun X, Liu R, Chen P-Y, Li Q, Yu S et al (2018) A 65 nm 4 kB algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors. In: 2018 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 496–498
46.
Zurück zum Zitat Si X, Chen J-J, Tu Y-N, Huang W-H, Wang J-H, Chiu Y-C, Wei W-C, Wu S-Y, Sun X, Liu R et al (2019) 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 396–398 Si X, Chen J-J, Tu Y-N, Huang W-H, Wang J-H, Chiu Y-C, Wei W-C, Wu S-Y, Sun X, Liu R et al (2019) 24.5 A twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based machine learning. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 396–398
47.
Zurück zum Zitat Yang J, Kong Y, Wang Z, Liu Y, Wang B, Yin S, Shi L (2019) 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modulation. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 394–396 Yang J, Kong Y, Wang Z, Liu Y, Wang B, Yin S, Shi L (2019) 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modulation. In: 2019 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 394–396
48.
Zurück zum Zitat Su J-W, Si X, Chou Y-C, Chang T-W, Huang W-H, Tu Y-N, Liu R, Lu P-J, Liu T-W, Wang J-H et al (2020) 15.2 A 28 nm 64 kB inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 240–242 Su J-W, Si X, Chou Y-C, Chang T-W, Huang W-H, Tu Y-N, Liu R, Lu P-J, Liu T-W, Wang J-H et al (2020) 15.2 A 28 nm 64 kB inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 240–242
49.
Zurück zum Zitat Si X, Tu Y-N, Huanq W-H, Su J-W, Lu P-J, Wang J-H, Liu T-W, Wu S-Y, Liu R, Chou Y-C et al (2020) 15.5 A 28 nm 64 kB 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–248 Si X, Tu Y-N, Huanq W-H, Su J-W, Lu P-J, Wang J-H, Liu T-W, Wu S-Y, Liu R, Chou Y-C et al (2020) 15.5 A 28 nm 64 kB 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips. In: 2020 IEEE international solid-state circuits conference (ISSCC). IEEE, pp 246–248
50.
Zurück zum Zitat Guo R, Liu Y, Zheng S, Wu S-Y, Ouyang P, Khwa W-S, Chen X, Chen J-J, Li X, Liu L et al (2019) A 5.1 pJ/neuron 127.3 \(\upmu \)s/inference RNN-based speech recognition processor using 16 computing-in-memory SRAM macros in 65 nm CMOS. In: 2019 symposium on VLSI circuits. IEEE, pp C120, C121 Guo R, Liu Y, Zheng S, Wu S-Y, Ouyang P, Khwa W-S, Chen X, Chen J-J, Li X, Liu L et al (2019) A 5.1 pJ/neuron 127.3 \(\upmu \)s/inference RNN-based speech recognition processor using 16 computing-in-memory SRAM macros in 65 nm CMOS. In: 2019 symposium on VLSI circuits. IEEE, pp C120, C121
51.
Zurück zum Zitat Li S, Niu D, Malladi KT, Zheng H, Brennan B, Xie Y (2017) DRISA: a DRAM-based reconfigurable in-situ accelerator. In: 2017 50th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 288–301 Li S, Niu D, Malladi KT, Zheng H, Brennan B, Xie Y (2017) DRISA: a DRAM-based reconfigurable in-situ accelerator. In: 2017 50th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 288–301
52.
Zurück zum Zitat Seshadri V, Lee D, Mullins T, Hassan H, Boroumand A, Kim J, Kozuch MA, Mutlu O, Gibbons PB, Mowry TC (2017) Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology. In: 2017 50th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 273–287 Seshadri V, Lee D, Mullins T, Hassan H, Boroumand A, Kim J, Kozuch MA, Mutlu O, Gibbons PB, Mowry TC (2017) Ambit: in-memory accelerator for bulk bitwise operations using commodity DRAM technology. In: 2017 50th annual IEEE/ACM international symposium on microarchitecture (MICRO). IEEE, pp 273–287
53.
Zurück zum Zitat Guo X, Merrikh Bayat F, Prezioso M, Chen Y, Nguyen B, Do N, Strukov DB (2017) Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells. In: 2017 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–4 Guo X, Merrikh Bayat F, Prezioso M, Chen Y, Nguyen B, Do N, Strukov DB (2017) Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells. In: 2017 IEEE custom integrated circuits conference (CICC). IEEE, pp 1–4
54.
Zurück zum Zitat Guo X, Merrikh Bayat F, Bavandpour M, Klachko M, Mahmoodi MR, Prezioso M, Likharev KK, Strukov DB (2017) Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. In: 2017 IEEE international electron devices meeting (IEDM). IEEE, pp 6–5 Guo X, Merrikh Bayat F, Bavandpour M, Klachko M, Mahmoodi MR, Prezioso M, Likharev KK, Strukov DB (2017) Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. In: 2017 IEEE international electron devices meeting (IEDM). IEEE, pp 6–5
55.
Zurück zum Zitat Ali K, Kai N, Wilbert VDH, Suman D, Arijit R (2020) Ferroelectronics for edge intelligence. IEEE Micro 40(6):33–48 Ali K, Kai N, Wilbert VDH, Suman D, Arijit R (2020) Ferroelectronics for edge intelligence. IEEE Micro 40(6):33–48
56.
Zurück zum Zitat Khan AI, Keshavarzi A, Datta S (2020) The future of ferroelectric field-effect transistor technology. Nat Electron 3(10):588–597 Khan AI, Keshavarzi A, Datta S (2020) The future of ferroelectric field-effect transistor technology. Nat Electron 3(10):588–597
57.
Zurück zum Zitat Manuel LG, Abu S, Roland M, Matteo M, Heiner G, Tomas T, Costas B, Alessandro C, Evangelos E (2018) Mixed-precision in-memory computing. Nat Electron 1(4):246–253 Manuel LG, Abu S, Roland M, Matteo M, Heiner G, Tomas T, Costas B, Alessandro C, Evangelos E (2018) Mixed-precision in-memory computing. Nat Electron 1(4):246–253
58.
Zurück zum Zitat Shi Y, Oh S, Huang Z, Lu X, Kang SH, Kuzum D (2020) Performance prospects of deeply scaled spin-transfer torque magnetic random-access memory for in-memory computing. IEEE Electron Dev Lett 41(7):1126–1129 Shi Y, Oh S, Huang Z, Lu X, Kang SH, Kuzum D (2020) Performance prospects of deeply scaled spin-transfer torque magnetic random-access memory for in-memory computing. IEEE Electron Dev Lett 41(7):1126–1129
Metadaten
Titel
Introduction
verfasst von
Jinshan Yue
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-3477-1_1