Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Chiara Gualandi

Erschienen in: Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since its origin, regenerative medicine has rapidly grown and has attracted the interest of many scientists and surgeons throughout the world. Nowadays regenerative medicine encompasses different strategies for the creation of new tissue including the use of cloning, of isolated cells, of non-cellular structures and of cells constructs. The latter approach, which is usually referred to as tissue engineering (TE), is believed to be highly promising for regenerating tissues. It is pointed out that a clear distinction between TE and regenerative medicine does not exist in the literature and some scientists use these terms as synonyms. In the present project, however, TE will be considered a sub-discipline of regenerative medicine that intends to use cell-constructs to achieve tissue repair.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1 Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1
2.
Zurück zum Zitat Vacanti JP, Vacanti CA (2007) The history and scope of tissue engineering. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 3–6 Vacanti JP, Vacanti CA (2007) The history and scope of tissue engineering. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 3–6
3.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920 Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920
4.
Zurück zum Zitat Leor J, Amsalem Y, Cohen S (2005) Cells, scaffolds and molecules for myocardial tissue engineering. Pharmacol Ther 105:151 Leor J, Amsalem Y, Cohen S (2005) Cells, scaffolds and molecules for myocardial tissue engineering. Pharmacol Ther 105:151
5.
Zurück zum Zitat Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Ann Rev Med 52:443 Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Ann Rev Med 52:443
6.
Zurück zum Zitat Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457 Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457
7.
Zurück zum Zitat Slack J (2007) Molecular biology of the cell. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 53–66 Slack J (2007) Molecular biology of the cell. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 53–66
8.
Zurück zum Zitat Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constrains. A comparative review. Tissue Eng 12:2367 Bilodeau K, Mantovani D (2006) Bioreactors for tissue engineering: focus on mechanical constrains. A comparative review. Tissue Eng 12:2367
9.
Zurück zum Zitat Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. Bioengineering Food Nat Prod 42:850 Vunjak-Novakovic G, Freed LE, Biron RJ, Langer R (1996) Effects of mixing on the composition and morphology of tissue-engineered cartilage. Bioengineering Food Nat Prod 42:850
10.
Zurück zum Zitat Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80 Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80
11.
Zurück zum Zitat Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345 Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345
12.
Zurück zum Zitat Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47 Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47
13.
Zurück zum Zitat Giancotti FG (2000) Complexity and specificity of integrin signaling. Nat Cell Biol 2:E13 Giancotti FG (2000) Complexity and specificity of integrin signaling. Nat Cell Biol 2:E13
14.
Zurück zum Zitat Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31 Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31
15.
Zurück zum Zitat Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115:1383 Streuli CH, Bailey N, Bissell MJ (1991) Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol 115:1383
16.
Zurück zum Zitat Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell live and death. Science 276:1425 Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell live and death. Science 276:1425
17.
Zurück zum Zitat Blaschke RJ, Howlett AR, Desprez P-Y, Peterson OW, Bissell MJ (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535 Blaschke RJ, Howlett AR, Desprez P-Y, Peterson OW, Bissell MJ (1994) Cell differentiation by extracellular matrix components. Methods Enzymol 245:535
18.
Zurück zum Zitat Veiseh M, Turley EA, Bissell MJ (2008) Top–down analysis of a dynamic environment: extracellular matrix structure and function. In: Laurencin CT, Nair LS (eds) Nanotechnology and Tissue Engineering: The Scaffold. CRC Press/Taylor & Francis Group, Boca Raton, pp 33–51 Veiseh M, Turley EA, Bissell MJ (2008) Top–down analysis of a dynamic environment: extracellular matrix structure and function. In: Laurencin CT, Nair LS (eds) Nanotechnology and Tissue Engineering: The Scaffold. CRC Press/Taylor & Francis Group, Boca Raton, pp 33–51
19.
Zurück zum Zitat ASTM F2150-07 (2007) Standard guide for characterization and testing of biomaterial scaffolds used in tissue-engineered medical products ASTM F2150-07 (2007) Standard guide for characterization and testing of biomaterial scaffolds used in tissue-engineered medical products
20.
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743 Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743
21.
Zurück zum Zitat Ma PX (2004) Scaffolds for tissue fabrication. Materials Today 7:30 Ma PX (2004) Scaffolds for tissue fabrication. Materials Today 7:30
22.
Zurück zum Zitat Yoon DM, Fisher JP (2007) Polymeric scaffolds for tissue engineering applications. In: Fisher JP, Mikos AG, Bronzino JD (eds) Tissue Engineering. CRC Press/Taylor & Francis Group, Boca Raton, pp 8-1–8-18 Yoon DM, Fisher JP (2007) Polymeric scaffolds for tissue engineering applications. In: Fisher JP, Mikos AG, Bronzino JD (eds) Tissue Engineering. CRC Press/Taylor & Francis Group, Boca Raton, pp 8-1–8-18
23.
Zurück zum Zitat Karande TS, Agrawal CM (2008) Functions and requirments of synthetic scaffolds in tissue engineering. In: Laurencin CT, Nair LS (eds) Nanotechnology and Tissue Engineering: The Scaffold. CRC Press/Taylor & Francis Group, Boca Raton, pp 53–86 Karande TS, Agrawal CM (2008) Functions and requirments of synthetic scaffolds in tissue engineering. In: Laurencin CT, Nair LS (eds) Nanotechnology and Tissue Engineering: The Scaffold. CRC Press/Taylor & Francis Group, Boca Raton, pp 53–86
24.
Zurück zum Zitat MUschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86-A:1541 MUschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86-A:1541
25.
Zurück zum Zitat Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432 Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432
26.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529 Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529
27.
Zurück zum Zitat Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86A:1541 Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86A:1541
28.
Zurück zum Zitat Van der Flier A, Sonnenberg A (2001) Function interactions of integrins. Cell Tissue Res 305:285 Van der Flier A, Sonnenberg A (2001) Function interactions of integrins. Cell Tissue Res 305:285
29.
Zurück zum Zitat Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785 Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785
30.
Zurück zum Zitat Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168 Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168
31.
Zurück zum Zitat Mathieu HJ (2001) Bioengineered material sufaces for medical applications. Surf Interface Anal 32:3 Mathieu HJ (2001) Bioengineered material sufaces for medical applications. Surf Interface Anal 32:3
32.
Zurück zum Zitat Saltzman WM, Kyriakides TR (2007) Cell interactions with polymers. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 279–296 Saltzman WM, Kyriakides TR (2007) Cell interactions with polymers. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 279–296
33.
Zurück zum Zitat Jiao Y-P, Cui F-Z (2007) Surface modification of polyester biomaterials for tissue engineering. Biomed Mater 2:R24 Jiao Y-P, Cui F-Z (2007) Surface modification of polyester biomaterials for tissue engineering. Biomed Mater 2:R24
34.
Zurück zum Zitat Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728 Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728
35.
Zurück zum Zitat Kim B-S, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224 Kim B-S, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224
36.
Zurück zum Zitat Williams DF (1987) Definitions in biomaterials. In: Proceeding of a Consensus Conference of the European Society for Biomaterials. Elsevier, Amsterdam Williams DF (1987) Definitions in biomaterials. In: Proceeding of a Consensus Conference of the European Society for Biomaterials. Elsevier, Amsterdam
37.
Zurück zum Zitat Park JB (2000) Biomaterials. In: Bronzino JD (ed) The Biomedical Engineering Handbook. CRC Press LLC, Boca Raton, p IV-1 Park JB (2000) Biomaterials. In: Bronzino JD (ed) The Biomedical Engineering Handbook. CRC Press LLC, Boca Raton, p IV-1
38.
Zurück zum Zitat Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014 Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014
39.
Zurück zum Zitat Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399 Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S (2006) Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399
40.
Zurück zum Zitat Zhang R, Ma PX (1999) Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446 Zhang R, Ma PX (1999) Poly(?-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446
41.
Zurück zum Zitat Rezwan K, Chen QZ, Blacker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413 Rezwan K, Chen QZ, Blacker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413
42.
Zurück zum Zitat Ikada Y (2006) Tissue engineering: fundamentals and applications. Elsevier, Amsterdam Ikada Y (2006) Tissue engineering: fundamentals and applications. Elsevier, Amsterdam
43.
Zurück zum Zitat Caterson EJ, Nesti LJ, Li W-J, Danielson KG, Albert TJ, Vaccaro AR, Tuan RS (2001) Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 57:394 Caterson EJ, Nesti LJ, Li W-J, Danielson KG, Albert TJ, Vaccaro AR, Tuan RS (2001) Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 57:394
44.
Zurück zum Zitat Zhang Y, Zhang M (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304 Zhang Y, Zhang M (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304
45.
Zurück zum Zitat Kim H-W, Kim H-E, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221 Kim H-W, Kim H-E, Salih V (2005) Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials 26:5221
46.
Zurück zum Zitat Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thikness. J Biomed Mater Res 67:1170 Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thikness. J Biomed Mater Res 67:1170
47.
Zurück zum Zitat Sarasam AR, Samli AI, Hess L, IHnat MA, Madihally SV (2007) Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromol Biosci 7:1160 Sarasam AR, Samli AI, Hess L, IHnat MA, Madihally SV (2007) Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromol Biosci 7:1160
48.
Zurück zum Zitat Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141 Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141
49.
Zurück zum Zitat Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147 Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R 34:147
50.
Zurück zum Zitat Agrawal CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38:105 Agrawal CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38:105
51.
Zurück zum Zitat Morita S-I, Ikada Y (2002) Lactide copolymers for scaffolds in tissue engineering. In: Tissue engineering and biodegradable equivalents: scientific and clinical applications, pp 111–122 Morita S-I, Ikada Y (2002) Lactide copolymers for scaffolds in tissue engineering. In: Tissue engineering and biodegradable equivalents: scientific and clinical applications, pp 111–122
52.
Zurück zum Zitat Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthrosc J Arthrosc Relat Surg 14:726 Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthrosc J Arthrosc Relat Surg 14:726
53.
Zurück zum Zitat Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery–polyglycolic/poly(actic acid) homo- and copolymers. Polymer 20:1459 Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery–polyglycolic/poly(actic acid) homo- and copolymers. Polymer 20:1459
54.
Zurück zum Zitat Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acid. J Biomed Mater Res 48:342 Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acid. J Biomed Mater Res 48:342
55.
Zurück zum Zitat Vert M, Garreau H, Maudit J, Boustta M, Schwach G, Engel R, Coudane J (1997) Complexity of the hydrolitic degradation of aliphatic polyesters. Die Angew Makrom Chem 247:239 Vert M, Garreau H, Maudit J, Boustta M, Schwach G, Engel R, Coudane J (1997) Complexity of the hydrolitic degradation of aliphatic polyesters. Die Angew Makrom Chem 247:239
56.
Zurück zum Zitat Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(?-hydroxy acids) in aqueous media, part 2:degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. J Mater Sci Mater Med 1:131 Li S, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly-(?-hydroxy acids) in aqueous media, part 2:degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. J Mater Sci Mater Med 1:131
57.
Zurück zum Zitat Miller RA, Brady JM, Cutright DE (1977) Degradation rate of oral resorbable implants (polylactate and polyglycolate): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11:711 Miller RA, Brady JM, Cutright DE (1977) Degradation rate of oral resorbable implants (polylactate and polyglycolate): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11:711
58.
Zurück zum Zitat De Groot JH, Zijlstra FM, Kuipers HW, Pennings AJ, Klompmaker J, Veth RPH, Jansen HWB (1997) Meniscal tissue regeneration in porous 50/50 copoly(L-lactide/?-caprolactone) implants. Biomaterials 18:613 De Groot JH, Zijlstra FM, Kuipers HW, Pennings AJ, Klompmaker J, Veth RPH, Jansen HWB (1997) Meniscal tissue regeneration in porous 50/50 copoly(L-lactide/?-caprolactone) implants. Biomaterials 18:613
59.
Zurück zum Zitat Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877 Xu CY, Inai R, Kotaki M, Ramakrishna S (2004) Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25:877
60.
Zurück zum Zitat Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883 Mo XM, Xu CY, Kotaki M, Ramakrishna S (2004) Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:1883
61.
Zurück zum Zitat Welle A, Kroger M, Doring M, Niederer K, Pindel E, Chronakis IS (2007) Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials 28:2211 Welle A, Kroger M, Doring M, Niederer K, Pindel E, Chronakis IS (2007) Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials 28:2211
62.
Zurück zum Zitat Mukherjee DP, Smith DF, Rogers SH, Emmanual JE, Jadin KD, Hayes BK (2009) Effect of 3D-microstructure of bioabsorbable PGA:TMC scaffolds on the growth of chondrogenic cell. J Biomed Mater Res Part B Appl Biomater 88B:92 Mukherjee DP, Smith DF, Rogers SH, Emmanual JE, Jadin KD, Hayes BK (2009) Effect of 3D-microstructure of bioabsorbable PGA:TMC scaffolds on the growth of chondrogenic cell. J Biomed Mater Res Part B Appl Biomater 88B:92
63.
Zurück zum Zitat Vinoy T, Zhang X, Catledge SA, Vohra YK (2007) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2:224 Vinoy T, Zhang X, Catledge SA, Vohra YK (2007) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2:224
64.
Zurück zum Zitat Pego AP, Siebum B, Luyn V, Gallego XJ, Seijen YV, Poot AA, Grijpma DW, Feijen J (2003) Preparation of degradable porous structures based on 1, 3-trimethylene carbonate and D, L-lactide (co)polymers for heart tissue engineering. Tissue Eng 9:981 Pego AP, Siebum B, Luyn V, Gallego XJ, Seijen YV, Poot AA, Grijpma DW, Feijen J (2003) Preparation of degradable porous structures based on 1, 3-trimethylene carbonate and D, L-lactide (co)polymers for heart tissue engineering. Tissue Eng 9:981
65.
Zurück zum Zitat Pego AP, Poot AA, Grijpma DW, Feijen J (2003) Biodegradable elastomeric scaffolds for soft tissue engineering. J Controlled Release 87:69 Pego AP, Poot AA, Grijpma DW, Feijen J (2003) Biodegradable elastomeric scaffolds for soft tissue engineering. J Controlled Release 87:69
66.
Zurück zum Zitat Plikk P, Malberg S, Albertsson A-C (2009) Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules 10:1259 Plikk P, Malberg S, Albertsson A-C (2009) Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules 10:1259
67.
Zurück zum Zitat Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145 Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145
68.
Zurück zum Zitat Ambrosio AM, Allcock HR, Katti DS, Laurencin CT (2002) Degradable polyphosphazene/poly(hydroxyester) blends: degradation studies. Biomaterials 23:1667 Ambrosio AM, Allcock HR, Katti DS, Laurencin CT (2002) Degradable polyphosphazene/poly(hydroxyester) blends: degradation studies. Biomaterials 23:1667
69.
Zurück zum Zitat Allcock HR, Fuller TJ, Matsumura K (1982) Hydrolysis pathways for amminophosphazenes. Inorg Chem 21:515 Allcock HR, Fuller TJ, Matsumura K (1982) Hydrolysis pathways for amminophosphazenes. Inorg Chem 21:515
70.
Zurück zum Zitat Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AM (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30:133 Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AM (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30:133
71.
Zurück zum Zitat Conconi MT, Lora S, Baiguera S, Boscolo E, Folin M, Scienza R, Rebuffat P, Parnigotto PP, Nussdorfer GG (2004) In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res 71A:669 Conconi MT, Lora S, Baiguera S, Boscolo E, Folin M, Scienza R, Rebuffat P, Parnigotto PP, Nussdorfer GG (2004) In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res 71A:669
72.
Zurück zum Zitat Ambrosio AM, Sahota JS, Runge C, Kurtz SM, Lakshmi S, Allcock HR, Laurencin CT (2003) Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 22:18 Ambrosio AM, Sahota JS, Runge C, Kurtz SM, Lakshmi S, Allcock HR, Laurencin CT (2003) Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag 22:18
73.
Zurück zum Zitat Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405 Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405
74.
Zurück zum Zitat Payne RG, McGonigle JS, Yaszemski Mj, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations Part 3 Proliferation, differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381 Payne RG, McGonigle JS, Yaszemski Mj, Yasko AW, Mikos AG (2002) Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations Part 3 Proliferation, differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381
75.
Zurück zum Zitat Yaszemski Mj, Payne RG, Hayes WC, Langer R, Aufdemorte TB, Mikos AG (1995) The ingrowth of new bone tissue, initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1:41 Yaszemski Mj, Payne RG, Hayes WC, Langer R, Aufdemorte TB, Mikos AG (1995) The ingrowth of new bone tissue, initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1:41
76.
Zurück zum Zitat Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer R, Vacanti J, Hadlock TA (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454 Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer R, Vacanti J, Hadlock TA (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454
77.
Zurück zum Zitat Gao J, Ensley AE, Nerem RM, Wang Y (2007) Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J Biomed Mater Res 83A:1070 Gao J, Ensley AE, Nerem RM, Wang Y (2007) Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J Biomed Mater Res 83A:1070
78.
Zurück zum Zitat Gao J, Crapo PM, Wang Y (2006) Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 12:917 Gao J, Crapo PM, Wang Y (2006) Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Eng 12:917
79.
Zurück zum Zitat Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602 Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602
80.
Zurück zum Zitat Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 39:125 Smith LA, Ma PX (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B Biointerfaces 39:125
81.
Zurück zum Zitat Murphy MB, Mikos AG (2007) Polymer scaffold fabrication. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 309–321 Murphy MB, Mikos AG (2007) Polymer scaffold fabrication. In: Lanza R, Langer R, Vacanti J (eds) Principles of Tissue Engineering. Elsevier, San Diego, pp 309–321
82.
Zurück zum Zitat Katoh K, Tanabe T, Yamauchi K (2004) Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25:4255 Katoh K, Tanabe T, Yamauchi K (2004) Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25:4255
83.
Zurück zum Zitat Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339 Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339
84.
Zurück zum Zitat Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363 Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363
85.
Zurück zum Zitat Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60 Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60
86.
Zurück zum Zitat Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559 Woolfson DN, Ryadnov MG (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr Opin Chem Biol 10:559
87.
Zurück zum Zitat Mathieu L, Montjovent M-O, Bourban P-E, Pioletti DP, Manson J-AE (2005) Bioresorbable composites prepared by supercritical fluid foaming. J Biomed Mater Res Part A 75:89 Mathieu L, Montjovent M-O, Bourban P-E, Pioletti DP, Manson J-AE (2005) Bioresorbable composites prepared by supercritical fluid foaming. J Biomed Mater Res Part A 75:89
88.
Zurück zum Zitat Ma K, Chan CK, Liao S, Hwang WYK, Feng Q, Ramakrishna S (2008) Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 29:2096 Ma K, Chan CK, Liao S, Hwang WYK, Feng Q, Ramakrishna S (2008) Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 29:2096
89.
Zurück zum Zitat Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34:211 Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34:211
90.
Zurück zum Zitat Sittinger M, Reitzel D, Dauner M, Hierlemann H, Hammer C, Kastenbauer E, Planck H, Burmester GR, Bujia J (1996) Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res Part B Appl Biomater 33:57 Sittinger M, Reitzel D, Dauner M, Hierlemann H, Hammer C, Kastenbauer E, Planck H, Burmester GR, Bujia J (1996) Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res Part B Appl Biomater 33:57
91.
Zurück zum Zitat Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217 Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217
92.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(-lactic acid) foams. Polymer 35:1068 Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(-lactic acid) foams. Polymer 35:1068
93.
Zurück zum Zitat Holy CE, Dang SM, Davies JE, Shoichet MS (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20:1177 Holy CE, Dang SM, Davies JE, Shoichet MS (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20:1177
94.
Zurück zum Zitat Suh SW, Shin YJ, Kim J, Min CH, Beak CH, Kim D-I, Kim H, Jeon SS, Choo IW (2002) Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J 48:460 Suh SW, Shin YJ, Kim J, Min CH, Beak CH, Kim D-I, Kim H, Jeon SS, Choo IW (2002) Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J 48:460
95.
Zurück zum Zitat Wake MC, Gupta PK, Mikos AG (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5:465 Wake MC, Gupta PK, Mikos AG (1996) Fabrication of pliable biodegradable polymer foams to engineer soft tissues. Cell Transplant 5:465
96.
Zurück zum Zitat Whang K, Thomas H, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837 Whang K, Thomas H, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837
97.
Zurück zum Zitat Whang K, Goldstick TK, Healy KE (2000) A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21:2545 Whang K, Goldstick TK, Healy KE (2000) A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 21:2545
98.
Zurück zum Zitat Shen F, Cui YL, Yang LF, Yao KD, Dong XH, Jia WY, Shi HD (2000) A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym Int 49:1596 Shen F, Cui YL, Yang LF, Yao KD, Dong XH, Jia WY, Shi HD (2000) A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym Int 49:1596
99.
Zurück zum Zitat Hou Q, Grijpma DW, Feijen J (2003) Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res Part B Appl Biomater 67B:732 Hou Q, Grijpma DW, Feijen J (2003) Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process. J Biomed Mater Res Part B Appl Biomater 67B:732
100.
Zurück zum Zitat Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, Wang D-M (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129 Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, Wang D-M (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129
101.
Zurück zum Zitat Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518 Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518
102.
Zurück zum Zitat Yan Y, Xiong Z, Hu Y, Wang S, Zhang R, Zhang C (2003) Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Mater Lett 57:2623 Yan Y, Xiong Z, Hu Y, Wang S, Zhang R, Zhang C (2003) Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition. Mater Lett 57:2623
103.
Zurück zum Zitat Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354 Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354
104.
Zurück zum Zitat Lo H, Kadiyala S, Guggino SE, Leong KW (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J Biomed Mater Res 30:475 Lo H, Kadiyala S, Guggino SE, Leong KW (1996) Poly(L-lactic acid) foams with cell seeding and controlled-release capacity. J Biomed Mater Res 30:475
105.
Zurück zum Zitat Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643 Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643
106.
Zurück zum Zitat Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 30:449 Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid-liquid phase separation. J Biomed Mater Res 30:449
107.
Zurück zum Zitat Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8 Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8
108.
Zurück zum Zitat Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783 Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20:1783
109.
Zurück zum Zitat Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 20:16 Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 20:16
110.
Zurück zum Zitat Beniash E, Hartgerink JD, Storrie H, Stendhal JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1:387 Beniash E, Hartgerink JD, Storrie H, Stendhal JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1:387
111.
Zurück zum Zitat Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Nat Acad Sci U S A 102:8414 Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Nat Acad Sci U S A 102:8414
112.
Zurück zum Zitat Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, Stupp SI (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res 78A:157 Harrington DA, Cheng EY, Guler MO, Lee LK, Donovan JL, Claussen RC, Stupp SI (2006) Branched peptide-amphiphiles as self-assembling coatings for tissue engineering scaffolds. J Biomed Mater Res 78A:157
113.
Zurück zum Zitat Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym Eng Sci 34:1137 Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym Eng Sci 34:1137
114.
Zurück zum Zitat Arora KA, Lesser AJ, McCarthy TJ (1998) Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31:4614 Arora KA, Lesser AJ, McCarthy TJ (1998) Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31:4614
115.
Zurück zum Zitat Colton JS, Suh NP (1987) The nucleation of microcellular thermoplastic foam with additives part I: theoretical considerations. Polym Eng Sci 27:485 Colton JS, Suh NP (1987) The nucleation of microcellular thermoplastic foam with additives part I: theoretical considerations. Polym Eng Sci 27:485
116.
Zurück zum Zitat Kumar V, Suh NP (1990) A process for making microcellular thermoplastic parts. Polym Eng Sci 30:1323 Kumar V, Suh NP (1990) A process for making microcellular thermoplastic parts. Polym Eng Sci 30:1323
117.
Zurück zum Zitat Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417 Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417
118.
Zurück zum Zitat Woods HM, Silva MCG, Nouvel C, Shakesheff KM, Howdle SM (2004) Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. J Mater Chem 14:1663 Woods HM, Silva MCG, Nouvel C, Shakesheff KM, Howdle SM (2004) Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. J Mater Chem 14:1663
119.
Zurück zum Zitat Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opinion Solid State Mater Sci 8:313 Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opinion Solid State Mater Sci 8:313
120.
Zurück zum Zitat Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431 Tomasko DL, Li H, Liu D, Han X, Wingert MJ, Lee LJ, Koelling KW (2003) A review of CO2 applications in the processing of polymers. Ind Eng Chem Res 42:6431
121.
Zurück zum Zitat Kazarian SG (2000) Polymer processing with supercritical fluids. Polym Sci Ser C 42:78 Kazarian SG (2000) Polymer processing with supercritical fluids. Polym Sci Ser C 42:78
122.
Zurück zum Zitat Barry JJA, Silva MMCG, Popov VK, Shakesheff KM, Howdle SM (2006) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Trans Roy Soc A 364:249 Barry JJA, Silva MMCG, Popov VK, Shakesheff KM, Howdle SM (2006) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Trans Roy Soc A 364:249
123.
Zurück zum Zitat Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation. Polym Eng Sci 34:1148 Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation. Polym Eng Sci 34:1148
124.
Zurück zum Zitat Murphy WL, Dennis RG, Kileny JL, Mooney DJ (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng 8:43 Murphy WL, Dennis RG, Kileny JL, Mooney DJ (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng 8:43
125.
Zurück zum Zitat Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Williams DJ, Howdle SM, Shakesheff KM (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 14:64 Tai H, Mather ML, Howard D, Wang W, White LJ, Crowe JA, Morgan SP, Williams DJ, Howdle SM, Shakesheff KM (2007) Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Eur Cell Mater 14:64
126.
Zurück zum Zitat Barry JJA, Gidda HS, Scotchford CA, Howdle SM (2004) Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials 25:3559 Barry JJA, Gidda HS, Scotchford CA, Howdle SM (2004) Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses. Biomaterials 25:3559
127.
Zurück zum Zitat Jenkins MJ, Harrison KL, Silva MCG, Whitaker MJ, Shakesheff KM, Howdle SM (2006) Characterization of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. Eur Polym J 42:3145 Jenkins MJ, Harrison KL, Silva MCG, Whitaker MJ, Shakesheff KM, Howdle SM (2006) Characterization of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. Eur Polym J 42:3145
128.
Zurück zum Zitat Xu Q, Ren X, Chang Y, Wang J, Yu L, Dean K (2004) Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. J Appl Polym Sci 94:593 Xu Q, Ren X, Chang Y, Wang J, Yu L, Dean K (2004) Generation of microcellular biodegradable polycaprolactone foams in supercritical carbon dioxide. J Appl Polym Sci 94:593
129.
Zurück zum Zitat Singh L, Kumar V, Ratner BD (2004) Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials 25:2611 Singh L, Kumar V, Ratner BD (2004) Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications. Biomaterials 25:2611
130.
Zurück zum Zitat Mathieu LM, Mueller TL, Bourban P-E, Pioletti DP, Muller R, Manson J-AE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27:916 Mathieu LM, Mueller TL, Bourban P-E, Pioletti DP, Muller R, Manson J-AE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27:916
131.
Zurück zum Zitat Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Controlled Release 64:91 Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Controlled Release 64:91
132.
Zurück zum Zitat Yang XB, Whitaker MJ, Sebald W, Clarke N, Howdle SM, Shakesheff KM, Oreffo ROC (2004) Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng 10:1037 Yang XB, Whitaker MJ, Sebald W, Clarke N, Howdle SM, Shakesheff KM, Oreffo ROC (2004) Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng 10:1037
133.
Zurück zum Zitat Hile DD, Amipour L, Akgerman A, Pishko MV (2000) Active growth factor delivery from poly(D, L-lactide-co-glycolide) foams prepared in supercritical CO2. J Controlled Release 66:177 Hile DD, Amipour L, Akgerman A, Pishko MV (2000) Active growth factor delivery from poly(D, L-lactide-co-glycolide) foams prepared in supercritical CO2. J Controlled Release 66:177
134.
Zurück zum Zitat Heyde M, Partridge KA, Howdle SM, Oreffo ROC, Garnett MC, Shakesheff KM (2007) Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique. Biotechnol Bioeng 98:679 Heyde M, Partridge KA, Howdle SM, Oreffo ROC, Garnett MC, Shakesheff KM (2007) Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique. Biotechnol Bioeng 98:679
135.
Zurück zum Zitat Jang J-H, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Controlled Release 86:157 Jang J-H, Shea LD (2003) Controllable delivery of non-viral DNA from porous scaffolds. J Controlled Release 86:157
136.
Zurück zum Zitat Cooley JF (1902) Apparatus for electrically dispersing fluids. US patent 692631 Cooley JF (1902) Apparatus for electrically dispersing fluids. US patent 692631
137.
Zurück zum Zitat Morton WJ (1902) Method of dispersing fluids. US patent 705691 Morton WJ (1902) Method of dispersing fluids. US patent 705691
138.
Zurück zum Zitat Formhals A (1934) Process and apparatus for preparing artificial threads. US patent 1975504 Formhals A (1934) Process and apparatus for preparing artificial threads. US patent 1975504
139.
Zurück zum Zitat Formhals A (1939) Method and apparatus for spinning. US patent 2160962 Formhals A (1939) Method and apparatus for spinning. US patent 2160962
140.
Zurück zum Zitat Formhals A (1940) Artificial thread and method of producing same. US patent 2187306 Formhals A (1940) Artificial thread and method of producing same. US patent 2187306
141.
Zurück zum Zitat Formhals A (1943) Production of artificial fibers from fiber forming liquids. US patent 2323025 Formhals A (1943) Production of artificial fibers from fiber forming liquids. US patent 2323025
142.
Zurück zum Zitat Formhals A (1944) Method and apparatus for spinning. US patent 2349950 Formhals A (1944) Method and apparatus for spinning. US patent 2349950
143.
Zurück zum Zitat Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin G (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glygolic acid) electrospinning. J Macromol Sci Pure Appl Chem A38:1231 Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin G (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glygolic acid) electrospinning. J Macromol Sci Pure Appl Chem A38:1231
144.
Zurück zum Zitat Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232 Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232
145.
Zurück zum Zitat Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613 Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613
146.
Zurück zum Zitat Boland ED, Bowlin GL, Simpson DG, Wnek GE (2001) Electrospinning of tissue engineering scaffolds. Polym Mater Sci Eng 85:51 Boland ED, Bowlin GL, Simpson DG, Wnek GE (2001) Electrospinning of tissue engineering scaffolds. Polym Mater Sci Eng 85:51
147.
Zurück zum Zitat Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Edition 12:979 Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Edition 12:979
148.
Zurück zum Zitat Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392 Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392
149.
Zurück zum Zitat Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the energing field of nanomedicine. Curr Pharm Des 12:4751 Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the energing field of nanomedicine. Curr Pharm Des 12:4751
150.
Zurück zum Zitat Shiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibres and their applications. Polym Rev 48:317 Shiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibres and their applications. Polym Rev 48:317
151.
Zurück zum Zitat Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291 Webster TJ, Schadler LS, Siegel RW, Bizios R (2001) Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291
152.
Zurück zum Zitat Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135 Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135
153.
Zurück zum Zitat Kwon IK, Kidoaki S, Matsuda T (2005) Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929 Kwon IK, Kidoaki S, Matsuda T (2005) Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929
154.
Zurück zum Zitat Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934 Noh HK, Lee SW, Kim JM, Oh JE, Kim KH, Chung CP, Choi SC, Park WH, Min BM (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934
155.
Zurück zum Zitat Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055 Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61:1055
156.
Zurück zum Zitat Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61:1007 Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61:1007
157.
Zurück zum Zitat Jang JH, Castano O, Kim HW (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61:1065 Jang JH, Castano O, Kim HW (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61:1065
158.
Zurück zum Zitat Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstruction. Acta Biomater 3:321 Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstruction. Acta Biomater 3:321
159.
Zurück zum Zitat Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30:440 Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30:440
160.
Zurück zum Zitat Sun T, Mai SM, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng 11:1023 Sun T, Mai SM, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng 11:1023
161.
Zurück zum Zitat Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67B:675 Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res Part B Appl Biomater 67B:675
162.
Zurück zum Zitat Chew SY, Mi R, Hoke A, Leong KW (2009) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653 Chew SY, Mi R, Hoke A, Leong KW (2009) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29:653
163.
Zurück zum Zitat Chew SY, Mi R, Hoke A, Leong KW (2007) Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater 17:1288 Chew SY, Mi R, Hoke A, Leong KW (2007) Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater 17:1288
164.
Zurück zum Zitat Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-?-caprolactone and a collagen/poly-?-caprolactone blend. Biomaterials 28:3012 Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-?-caprolactone and a collagen/poly-?-caprolactone blend. Biomaterials 28:3012
165.
Zurück zum Zitat Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603 Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603
166.
Zurück zum Zitat Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574 Koh HS, Yong T, Chan CK, Ramakrishna S (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574
167.
Zurück zum Zitat Bini TB, Wang S, Gao S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453 Bini TB, Wang S, Gao S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453
168.
Zurück zum Zitat Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077 Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077
169.
Zurück zum Zitat Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and ?-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065 Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and ?-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29:4065
170.
Zurück zum Zitat Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139 Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139
171.
Zurück zum Zitat Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res 82A:445 Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S (2007) Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res 82A:445
172.
Zurück zum Zitat Kim H-W, Song J-H, Kim H-E (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988 Kim H-W, Song J-H, Kim H-E (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988
173.
Zurück zum Zitat Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J (2007) In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res 83:999 Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J (2007) In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J Biomed Mater Res 83:999
174.
Zurück zum Zitat Stitzel J, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2001) Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J Biomater Appl 16:22 Stitzel J, Pawlowski KJ, Wnek GE, Simpson DG, Bowlin GL (2001) Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. J Biomater Appl 16:22
175.
Zurück zum Zitat Stitzel J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Dyke MV, Czerw R, Yoo JJ, Atala A (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088 Stitzel J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Dyke MV, Czerw R, Yoo JJ, Atala A (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27:1088
176.
Zurück zum Zitat Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T (2006) Mechanical responses of a compliant electrospun poly(L-lactide-co-?-caprolactone) small-diameter vascular graft. Biomaterials 27:1470 Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T (2006) Mechanical responses of a compliant electrospun poly(L-lactide-co-?-caprolactone) small-diameter vascular graft. Biomaterials 27:1470
177.
Zurück zum Zitat Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422 Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422
178.
Zurück zum Zitat Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1:575 Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT (2005) Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater 1:575
179.
Zurück zum Zitat In Jeong S, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115 In Jeong S, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28:1115
180.
Zurück zum Zitat Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2009) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19:653 Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2009) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19:653
181.
Zurück zum Zitat Shin M, Ishii O, Sueda T, Vacanti JP (2004) Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25:3717 Shin M, Ishii O, Sueda T, Vacanti JP (2004) Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25:3717
182.
Zurück zum Zitat Rockwood DN, Akins RE, Parrag IC, Woodhouse KA, Rabolt JF (2008) Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29:4783 Rockwood DN, Akins RE, Parrag IC, Woodhouse KA, Rabolt JF (2008) Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29:4783
183.
Zurück zum Zitat Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, Chu B, Entcheva E (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330 Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, Chu B, Entcheva E (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26:5330
184.
Zurück zum Zitat Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599 Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599
185.
Zurück zum Zitat Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9:1044 Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9:1044
186.
Zurück zum Zitat Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006 Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006
187.
Zurück zum Zitat Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621 Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621
188.
Zurück zum Zitat Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controlled Release 105:43 Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controlled Release 105:43
189.
Zurück zum Zitat Xie J, Wang C-H (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23:1817 Xie J, Wang C-H (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23:1817
190.
Zurück zum Zitat Huang Z-M, He CL, Yang A, Zhang Y, Han X-J, Yin J (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77A:169 Huang Z-M, He CL, Yang A, Zhang Y, Han X-J, Yin J (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res Part A 77A:169
191.
Zurück zum Zitat Cui W, Li X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(D,L-lactide) fibers with paracetanol inoculation. Biomacromolecules 7:1623 Cui W, Li X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(D,L-lactide) fibers with paracetanol inoculation. Biomacromolecules 7:1623
192.
Zurück zum Zitat Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92:227 Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92:227
193.
Zurück zum Zitat Qi H, Hu P, Xu J, Wang A (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 7:2327 Qi H, Hu P, Xu J, Wang A (2006) Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment. Biomacromolecules 7:2327
194.
Zurück zum Zitat Luong-Van E, Grondahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Controlled release of heparin from poly(?-caprolactone) electrospun fibers. Biomaterials 27:2042 Luong-Van E, Grondahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Controlled release of heparin from poly(?-caprolactone) electrospun fibers. Biomaterials 27:2042
195.
Zurück zum Zitat Zhang Y, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(?-caprolactone) nanofibers for sustained release. Biomacromolecules 7:1049 Zhang Y, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S (2006) Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(?-caprolactone) nanofibers for sustained release. Biomacromolecules 7:1049
196.
Zurück zum Zitat Casper CL, Yamaguchi N, Kiick KL, Rabolt JF (2005) Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998 Casper CL, Yamaguchi N, Kiick KL, Rabolt JF (2005) Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules 6:1998
197.
Zurück zum Zitat Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6:1484 Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A (2005) Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6:1484
198.
Zurück zum Zitat Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029 Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19:1029
199.
Zurück zum Zitat Chew SY, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017 Chew SY, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017
200.
Zurück zum Zitat Lu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Controlled Release 89:341 Lu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Controlled Release 89:341
201.
Zurück zum Zitat Kretlow JD, Mikos AG (2008) From material to tissue: biomaterial development, scaffold fabrication, and tissue engineering. AlChE J 54:3048 Kretlow JD, Mikos AG (2008) From material to tissue: biomaterial development, scaffold fabrication, and tissue engineering. AlChE J 54:3048
202.
Zurück zum Zitat Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103 Chen RR, Mooney DJ (2003) Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 20:1103
203.
Zurück zum Zitat Saltzman WM, Olbricht WL (2002) Building dug delivery into tissue engineering. Nat Rev Drug Discov 1:177 Saltzman WM, Olbricht WL (2002) Building dug delivery into tissue engineering. Nat Rev Drug Discov 1:177
204.
Zurück zum Zitat Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385 Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385
Metadaten
Titel
Introduction
verfasst von
Chiara Gualandi
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-19272-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.