Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Guohua Liu

Erschienen in: Thermoplasmonics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Thermoplasmonics is an increasingly important technology in scientific research due to its ability to control temperature at the nanoscale [14]. It operates based on the unique physics of plasmonic nanostructures interacting with light. Plasmonic materials, often in the form of metallic nanoparticles, manifest localized surface plasmon resonances (LSPRs) arising from the collective electron oscillations in response to incoming electromagnetic waves [5]. Upon illumination, plasmonic nanostructures absorb photons which trigger collective oscillations of the electrons with the frequency of incident light. This synchronized electron movement significantly intensifies the electric field near the particle surface, creating localized electromagnetic field intensification referred to as hot spot [6, 7]. This intense hot spot generated by plasmonic nanoparticles serves as an efficient source of heat. The uptake of light energy by plasmonic particles initiates nonradiative decays, including electron–electron scattering and electron–phonon coupling, leading to the conversion of photon energy into thermal energy [8, 9]. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)CrossRefPubMed G. Baffou, F. Cichos, R. Quidant, Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020)CrossRefPubMed
2.
Zurück zum Zitat V.T. Ruhoff, M.R. Arastoo, G. Moreno-Pescador, P.M. Bendix, Biological applications of thermoplasmonics. Nano Lett. 24(3), 777–789 (2024) V.T. Ruhoff, M.R. Arastoo, G. Moreno-Pescador, P.M. Bendix, Biological applications of thermoplasmonics. Nano Lett. 24(3), 777–789 (2024)
3.
Zurück zum Zitat G. Liu, J. Xu, T. Chen, K. Wang, Progress in thermoplasmonics for solar energy applications. Phys. Rep. 981, 1–50 (2022)CrossRef G. Liu, J. Xu, T. Chen, K. Wang, Progress in thermoplasmonics for solar energy applications. Phys. Rep. 981, 1–50 (2022)CrossRef
4.
Zurück zum Zitat S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)CrossRefPubMed S. Santoro, A.H. Avci, A. Politano, E. Curcio, The advent of thermoplasmonic membrane distillation. Chem. Soc. Rev. 51, 6087–6125 (2022)CrossRefPubMed
5.
Zurück zum Zitat S.A. Maier, Plasmonics Fundamentals and Applications. (Springer Science+Business Media LLC, 2007) S.A. Maier, Plasmonics Fundamentals and Applications. (Springer Science+Business Media LLC, 2007)
6.
Zurück zum Zitat G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef G. Baffou, R. Quidant, Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2012)CrossRef
7.
Zurück zum Zitat C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in Plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8 (2019) C. Kuppe, K.R. Rusimova, L. Ohnoutek, D. Slavov, V.K. Valev, “Hot” in Plasmonics: temperature-related concepts and applications of metal nanostructures. Adv. Opt. Mater. 8 (2019)
8.
Zurück zum Zitat M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)CrossRefPubMed M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015)CrossRefPubMed
9.
Zurück zum Zitat S.V. Boriskina, H. Ghasemi, G. Chen, Plasmonic materials for energy: from physics to applications. Mater. Today 16, 375–386 (2013)CrossRef S.V. Boriskina, H. Ghasemi, G. Chen, Plasmonic materials for energy: from physics to applications. Mater. Today 16, 375–386 (2013)CrossRef
10.
Zurück zum Zitat A. Rao, A.S. Iglesias, M. Grzelczak, Choreographing oscillatory hydrodynamics with DNA-coated gold nanoparticles. J. Am. Chem. Soc. 146, 18236–18240 (2024)CrossRefPubMedPubMedCentral A. Rao, A.S. Iglesias, M. Grzelczak, Choreographing oscillatory hydrodynamics with DNA-coated gold nanoparticles. J. Am. Chem. Soc. 146, 18236–18240 (2024)CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)CrossRefPubMed B. Yang, C. Li, Z. Wang, Q. Dai, Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Adv. Mater. 34, e2107351 (2022)CrossRefPubMed
12.
Zurück zum Zitat L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)CrossRefPubMed L. Jauffred, A. Samadi, H. Klingberg, P.M. Bendix, L.B. Oddershede, Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019)CrossRefPubMed
13.
Zurück zum Zitat A.B. Urcan Guler, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014) A.B. Urcan Guler, V.M. Shalaev, Refractory plasmonics. Science 344, 263–264 (2014)
14.
Zurück zum Zitat F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)CrossRefPubMed F. Wang, Y.R. Shen, General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006)CrossRefPubMed
15.
Zurück zum Zitat G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)CrossRefPubMed G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013)CrossRefPubMed
16.
Zurück zum Zitat J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011)CrossRefPubMed J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011)CrossRefPubMed
17.
18.
Zurück zum Zitat M.B. Ross, M.G. Blaber, G.C. Schatz, Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 5, 4090 (2014)CrossRefPubMed M.B. Ross, M.G. Blaber, G.C. Schatz, Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 5, 4090 (2014)CrossRefPubMed
19.
Zurück zum Zitat D.R. Ward, F. Huser, F. Pauly, J.C. Cuevas, D. Natelson, Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010)CrossRefPubMed D.R. Ward, F. Huser, F. Pauly, J.C. Cuevas, D. Natelson, Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010)CrossRefPubMed
20.
Zurück zum Zitat L.O. Herrmann, V.K. Valev, C. Tserkezis, J.S. Barnard, S. Kasera, O.A. Scherman, J. Aizpurua, J.J. Baumberg, Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)CrossRefPubMed L.O. Herrmann, V.K. Valev, C. Tserkezis, J.S. Barnard, S. Kasera, O.A. Scherman, J. Aizpurua, J.J. Baumberg, Threading plasmonic nanoparticle strings with light. Nat. Commun. 5, 4568 (2014)CrossRefPubMed
21.
Zurück zum Zitat L. Meng, R. Yu, M. Qiu, F.J. Garcia de Abajo, Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano 11, 7915–7924 (2017)CrossRefPubMed L. Meng, R. Yu, M. Qiu, F.J. Garcia de Abajo, Plasmonic nano-oven by concatenation of multishell photothermal enhancement. ACS Nano 11, 7915–7924 (2017)CrossRefPubMed
22.
Zurück zum Zitat D. Yoo, F. de León-Pérez, M. Pelton, I.H. Lee, D.A. Mohr, M.B. Raschke, J.D. Caldwell, L. Martín-Moreno, S.H. Oh, Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15, 125–130 (2020)CrossRef D. Yoo, F. de León-Pérez, M. Pelton, I.H. Lee, D.A. Mohr, M.B. Raschke, J.D. Caldwell, L. Martín-Moreno, S.H. Oh, Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities. Nat. Photonics 15, 125–130 (2020)CrossRef
23.
Zurück zum Zitat L.D. Sio, Active Plasmonic Nanomaterials (CRC Press, Taylor & Francis Group, LLC, 2016). International Standard Book Number-13: 978-981-4613-4601-4619 L.D. Sio, Active Plasmonic Nanomaterials (CRC Press, Taylor & Francis Group, LLC, 2016). International Standard Book Number-13: 978-981-4613-4601-4619
24.
Zurück zum Zitat N. Jiang, X. Zhuo, J. Wang, Active Plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018)CrossRefPubMed N. Jiang, X. Zhuo, J. Wang, Active Plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054–3099 (2018)CrossRefPubMed
25.
Zurück zum Zitat T. Ding, V.K. Valev, A.R. Salmon, C.J. Forman, S.K. Smoukov, O.A. Scherman, D. Frenkel, J.J. Baumberg, Light-induced actuating nanotransducers. Proc. Natl. Acad. Sci. U.S.A. 113, 5503–5507 (2016)CrossRefPubMedPubMedCentral T. Ding, V.K. Valev, A.R. Salmon, C.J. Forman, S.K. Smoukov, O.A. Scherman, D. Frenkel, J.J. Baumberg, Light-induced actuating nanotransducers. Proc. Natl. Acad. Sci. U.S.A. 113, 5503–5507 (2016)CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834 G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, 2018). ISBN 978-971-108-41832-41834
27.
Zurück zum Zitat M. Quintanilla, L.M. Liz-Marzán, Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018)CrossRef M. Quintanilla, L.M. Liz-Marzán, Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018)CrossRef
28.
Zurück zum Zitat M. Da Browski, Y. Dai, H. Petek, Ultrafast photoemission electron microscopy: imaging Plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020)CrossRefPubMed M. Da Browski, Y. Dai, H. Petek, Ultrafast photoemission electron microscopy: imaging Plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020)CrossRefPubMed
29.
Zurück zum Zitat G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p. 275 G.B. Matthew Pelton, Introduction to Metal-Nanoparticle Plasmonics (Wiley, 2013), p. 275
30.
Zurück zum Zitat G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)CrossRefPubMed G. Baffou, R. Quidant, F.J. Garcia de Abajo, Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010)CrossRefPubMed
31.
Zurück zum Zitat R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich, R. Liu, Y. Liu, Y. Zhao, S. Pang, H. An, C. Ni, P. Zhou, K. Han, F. Fan, C. Li, Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296–301 (2022)CrossRefPubMed R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich, R. Liu, Y. Liu, Y. Zhao, S. Pang, H. An, C. Ni, P. Zhou, K. Han, F. Fan, C. Li, Spatiotemporal imaging of charge transfer in photocatalyst particles. Nature 610, 296–301 (2022)CrossRefPubMed
32.
Zurück zum Zitat O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, P.A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013)CrossRefPubMed O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, P.A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013)CrossRefPubMed
33.
Zurück zum Zitat X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, reports on progress in physics. Physical Society 76, 046401 (2013) X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, reports on progress in physics. Physical Society 76, 046401 (2013)
34.
Zurück zum Zitat U. Das, R. Biswas, N. Mazumder, Elucidating thermal effects in plasmonic metal nanostructures: a tutorial review. Eur. Phys. J. Plus 137 (2022) U. Das, R. Biswas, N. Mazumder, Elucidating thermal effects in plasmonic metal nanostructures: a tutorial review. Eur. Phys. J. Plus 137 (2022)
35.
Zurück zum Zitat B. Luo, W. Wang, Y. Zhao, Y. Zhao, Hot-Electron dynamics mediated medical diagnosis and therapy. Chem. Rev. 123, 10808–10833 (2023)CrossRefPubMed B. Luo, W. Wang, Y. Zhao, Y. Zhao, Hot-Electron dynamics mediated medical diagnosis and therapy. Chem. Rev. 123, 10808–10833 (2023)CrossRefPubMed
36.
Zurück zum Zitat S.Y. Lee, M.J. Shieh, Platinum(II) drug-loaded gold nanoshells for chemo-photothermal therapy in colorectal cancer. ACS Appl. Mater. Interfaces. 12, 4254–4264 (2020)CrossRefPubMed S.Y. Lee, M.J. Shieh, Platinum(II) drug-loaded gold nanoshells for chemo-photothermal therapy in colorectal cancer. ACS Appl. Mater. Interfaces. 12, 4254–4264 (2020)CrossRefPubMed
37.
Zurück zum Zitat M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 20, 101–124 (2021)CrossRefPubMed M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discovery 20, 101–124 (2021)CrossRefPubMed
38.
Zurück zum Zitat E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)CrossRefPubMedPubMedCentral E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10, 67–80 (2015)CrossRef J.G. Smith, J.A. Faucheaux, P.K. Jain, Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 10, 67–80 (2015)CrossRef
40.
Zurück zum Zitat G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional Plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020)CrossRefPubMed G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G.A. Kullak-Ublick, J. Wang, Dual-functional Plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020)CrossRefPubMed
41.
Zurück zum Zitat E. Haque, M. Anwar Hossain, Y. Namihira, F. Ahmed, Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 58, 1547–1554 (2019) E. Haque, M. Anwar Hossain, Y. Namihira, F. Ahmed, Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 58, 1547–1554 (2019)
42.
Zurück zum Zitat J. Lee, I. Lee, T.S. Kim, J.Y. Lee, Efficient welding of silver nanowire networks without post-processing. Small 9, 2887–2894 (2013)CrossRefPubMed J. Lee, I. Lee, T.S. Kim, J.Y. Lee, Efficient welding of silver nanowire networks without post-processing. Small 9, 2887–2894 (2013)CrossRefPubMed
43.
Zurück zum Zitat S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S.S. Lee, M.Y. Yang, S.H. Ko, Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014)CrossRefPubMed S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S.S. Lee, M.Y. Yang, S.H. Ko, Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26, 5808–5814 (2014)CrossRefPubMed
44.
Zurück zum Zitat L. Wang, Y. Feng, Z. Li, G. Liu, Nanoscale thermoplasmonic welding. iScience 25, 104422 (2022) L. Wang, Y. Feng, Z. Li, G. Liu, Nanoscale thermoplasmonic welding. iScience 25, 104422 (2022)
Metadaten
Titel
Introduction
verfasst von
Guohua Liu
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8332-8_1