Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang

Erschienen in: Graph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Remote Sensing (RS) is a non-contact earth observation technology that obtains ground target information through the reflection or radiation of electromagnetic waves on ground objects (SambhuNath in An introduction to remote sensing. Koros, 2014; Brink et al. in Introduction to remote sensing for conservation practitioners, 2018). Military remote sensing technology can use remote sensing carriers, e.g., satellites and unmanned aerial vehicles (UAVs), to carry out high-resolution, real-time, multi-angle and multi-frequency remote sensing observation and acquisition of enemy military targets. Then, the military intelligence of enemy and battlefield conditions can be monitored, which provides intelligence support and tactical guidance for military command departments. Therefore, this technology holds a pivotal position in modern warfare, and is of great significance in improving combat efficiency and reducing war costs. In the Russia–Ukraine conflict, both sides have realized the importance of high-precision remote sensing images in obtaining the military deployment trends of the other side, and they compete to use remote sensing technology to timely understand each other’s dynamics and develop corresponding strategies accordingly. At the same time, satellite remote sensing images have become the best tool for netizens and journalists to understand and analyze the conflict situation in Ukraine, enabling remote sensing technology to gain widespread attention in public opinion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat SambhuNath, An introduction to remote sensing. Koros (2014) SambhuNath, An introduction to remote sensing. Koros (2014)
2.
Zurück zum Zitat A.B. Brink, C. Schmidt, Z. Szantoi, Introduction to remote sensing for conservation practitioners (2018) A.B. Brink, C. Schmidt, Z. Szantoi, Introduction to remote sensing for conservation practitioners (2018)
3.
Zurück zum Zitat P. Mchaffie, S. Hwang, C. Follett, Introduction to remote sensing and GIS (2018) P. Mchaffie, S. Hwang, C. Follett, Introduction to remote sensing and GIS (2018)
4.
Zurück zum Zitat S. Somvanshi, M. Kumari, An introduction to remote sensing and its applications (2014) S. Somvanshi, M. Kumari, An introduction to remote sensing and its applications (2014)
5.
Zurück zum Zitat Y. Dua, V. Kumar, R.S. Singh, Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 59, 9 (2020)CrossRef Y. Dua, V. Kumar, R.S. Singh, Comprehensive review of hyperspectral image compression algorithms. Opt. Eng. 59, 9 (2020)CrossRef
6.
Zurück zum Zitat A. Kaul, S. Raina, Support vectormachine versus convolutional neural network for hyperspectral image classification: a systematic review. Concurr. Comput. Pract. Exper. (2022) A. Kaul, S. Raina, Support vectormachine versus convolutional neural network for hyperspectral image classification: a systematic review. Concurr. Comput. Pract. Exper. (2022)
7.
Zurück zum Zitat S.P. Sabale, A.C.R. Jadhav, Supervised, unsupervised, and semisupervised classification methods for hyperspectral image classification: a review. Int. J. Sci. Res. 3, 2319–7064 (2014) S.P. Sabale, A.C.R. Jadhav, Supervised, unsupervised, and semisupervised classification methods for hyperspectral image classification: a review. Int. J. Sci. Res. 3, 2319–7064 (2014)
8.
Zurück zum Zitat L.M. Bruce, C.H. Koger, J. Li, Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40(10), 2331–2338 (2002)CrossRef L.M. Bruce, C.H. Koger, J. Li, Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40(10), 2331–2338 (2002)CrossRef
9.
Zurück zum Zitat J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012)CrossRef J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5(2), 354–379 (2012)CrossRef
10.
Zurück zum Zitat R. Heylen, M. Parente, P. Gader, A review of nonlinear hyperspectral unmixing methods. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 1844–1868 (2014)CrossRef R. Heylen, M. Parente, P. Gader, A review of nonlinear hyperspectral unmixing methods. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 1844–1868 (2014)CrossRef
11.
Zurück zum Zitat J. Liu, Z. Hou, W. Li, R. Tao, D. Orlando, H. Li, Multipixel anomaly detection with unknown patterns for hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. 33(10), 5557–5567 (2021)MathSciNetCrossRef J. Liu, Z. Hou, W. Li, R. Tao, D. Orlando, H. Li, Multipixel anomaly detection with unknown patterns for hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. 33(10), 5557–5567 (2021)MathSciNetCrossRef
12.
Zurück zum Zitat W. Rao, Y. Qu, L. Gao, X. Sun, Y. Wu, B. Zhang, Transferable network with Siamese architecture for anomaly detection in hyperspectral images. Int. J. Appl. Earth Observ. Geoinform. 106, 102669 (2022)CrossRef W. Rao, Y. Qu, L. Gao, X. Sun, Y. Wu, B. Zhang, Transferable network with Siamese architecture for anomaly detection in hyperspectral images. Int. J. Appl. Earth Observ. Geoinform. 106, 102669 (2022)CrossRef
13.
Zurück zum Zitat R. Ran, L.-J. Deng, T.-X. Jiang, J.-F. Hu, J. Chanussot, G. Vivone, GuidedNet: a general CNN fusion framework via high-resolution guidance for hyperspectral image super-resolution. IEEE Trans. Cybern. (2023) R. Ran, L.-J. Deng, T.-X. Jiang, J.-F. Hu, J. Chanussot, G. Vivone, GuidedNet: a general CNN fusion framework via high-resolution guidance for hyperspectral image super-resolution. IEEE Trans. Cybern. (2023)
14.
Zurück zum Zitat Y. Dong, Q. Liu, B. Du, L. Zhang, Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 31, 1559–1572 (2022)CrossRef Y. Dong, Q. Liu, B. Du, L. Zhang, Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 31, 1559–1572 (2022)CrossRef
15.
Zurück zum Zitat J.M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, J. Chanussot, Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1, 6–36 (2013)CrossRef J.M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, J. Chanussot, Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1, 6–36 (2013)CrossRef
16.
Zurück zum Zitat W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs. Adv. Neural Inform. Process. Syst. 30, 11542 (2017) W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs. Adv. Neural Inform. Process. Syst. 30, 11542 (2017)
17.
Zurück zum Zitat A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, Protein interface prediction using graph convolutional networks. Adv. Neural Inform. Process. Syst. 30, 354 (2017) A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, Protein interface prediction using graph convolutional networks. Adv. Neural Inform. Process. Syst. 30, 354 (2017)
18.
Zurück zum Zitat X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, Kgat: knowledge graph attention network for recommendation, pp. 950–958 X. Wang, X. He, Y. Cao, M. Liu, T.-S. Chua, Kgat: knowledge graph attention network for recommendation, pp. 950–958
19.
Zurück zum Zitat A. Sellami, S. Tabbone, Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recogn. 121, 108224 (2022)CrossRef A. Sellami, S. Tabbone, Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recogn. 121, 108224 (2022)CrossRef
20.
Zurück zum Zitat J. Wang, X. Tan, J. Lai, J. Li, ASPCNet: deep adaptive spatial pattern capsule network for hyperspectral image classification. Neurocomputing 486, 47–60 (2022)CrossRef J. Wang, X. Tan, J. Lai, J. Li, ASPCNet: deep adaptive spatial pattern capsule network for hyperspectral image classification. Neurocomputing 486, 47–60 (2022)CrossRef
21.
Zurück zum Zitat L. Wei, Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(4), 1185–1198 (2012)CrossRef L. Wei, Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 50(4), 1185–1198 (2012)CrossRef
22.
Zurück zum Zitat T.V. Bandos, L. Bruzzone, G. Camps-Valls, Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)CrossRef T.V. Bandos, L. Bruzzone, G. Camps-Valls, Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 47(3), 862–873 (2009)CrossRef
23.
Zurück zum Zitat A. Agarwal, T. El-Ghazawi, H. El-Askary, J. Le-Moigne, Efficient hierarchical-PCA dimension reduction for hyperspectral imagery, in Proceedings of the Signal Processing and Information Technology (2007) A. Agarwal, T. El-Ghazawi, H. El-Askary, J. Le-Moigne, Efficient hierarchical-PCA dimension reduction for hyperspectral imagery, in Proceedings of the Signal Processing and Information Technology (2007)
24.
Zurück zum Zitat N. Keshava, Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 42(7), 1552–1565 (2004)CrossRef N. Keshava, Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 42(7), 1552–1565 (2004)CrossRef
25.
Zurück zum Zitat L. Bruzzone, F. Roli, An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 33(6), 1318–1321 (1995)CrossRef L. Bruzzone, F. Roli, An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 33(6), 1318–1321 (1995)CrossRef
26.
Zurück zum Zitat T. Kailath, The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)CrossRef T. Kailath, The divergence and bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)CrossRef
27.
Zurück zum Zitat M.A. Hossain, M. Pickering, X. Jia, Unsupervised feature extraction based on a mutual information measure for hyperspectral image classification, in Proceedings of the IEEE (2011), pp. 1720–1723 M.A. Hossain, M. Pickering, X. Jia, Unsupervised feature extraction based on a mutual information measure for hyperspectral image classification, in Proceedings of the IEEE (2011), pp. 1720–1723
28.
Zurück zum Zitat F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)CrossRef F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)CrossRef
29.
Zurück zum Zitat J. Ham, Y. Chen, M.M. Crawford, J. Ghosh, Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)CrossRef J. Ham, Y. Chen, M.M. Crawford, J. Ghosh, Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)CrossRef
30.
Zurück zum Zitat S. Delalieux, B. Somers, B. Haest, T. Spanhove, J.V. Borre, C. Mücher, Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers. Remote Sens. Environ. 126, 222–231 (2012)CrossRef S. Delalieux, B. Somers, B. Haest, T. Spanhove, J.V. Borre, C. Mücher, Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers. Remote Sens. Environ. 126, 222–231 (2012)CrossRef
31.
Zurück zum Zitat Y. Chen, N.M. Nasrabadi, T.D. Tran, Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)CrossRef Y. Chen, N.M. Nasrabadi, T.D. Tran, Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)CrossRef
32.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59(1), 597–612 (2020)CrossRef S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, J. Yang, Hyperspectral image classification with context-aware dynamic graph convolutional network. IEEE Trans. Geosci. Remote Sens. 59(1), 597–612 (2020)CrossRef
33.
Zurück zum Zitat L. He, J. Li, C. Liu, S. Li, Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 99, 1–19 (2017) L. He, J. Li, C. Liu, S. Li, Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 99, 1–19 (2017)
34.
Zurück zum Zitat H. Xin, L. Zhang, An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 46(12), 4173–4185 (2008)CrossRef H. Xin, L. Zhang, An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 46(12), 4173–4185 (2008)CrossRef
35.
Zurück zum Zitat M. Pesaresi, J.A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2002)CrossRef M. Pesaresi, J.A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2002)CrossRef
36.
Zurück zum Zitat J.A. Benediktsson, J.A. Palmason, J.R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRef J.A. Benediktsson, J.A. Palmason, J.R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRef
37.
Zurück zum Zitat M. Fauvel, J. Chanussot, N.A. Benediktsson, A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recogn. 45, 381–392 (2012)CrossRef M. Fauvel, J. Chanussot, N.A. Benediktsson, A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recogn. 45, 381–392 (2012)CrossRef
38.
Zurück zum Zitat M.M. Dalla, J.A. Benediktsson, B. Waske, B. Lorenzo, Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)CrossRef M.M. Dalla, J.A. Benediktsson, B. Waske, B. Lorenzo, Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)CrossRef
39.
Zurück zum Zitat M.D. Mura, A. Villa, J.A. Benediktsson, J. Chanussot, L. Bruzzone, Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8(3), 542–546 (2011)CrossRef M.D. Mura, A. Villa, J.A. Benediktsson, J. Chanussot, L. Bruzzone, Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8(3), 542–546 (2011)CrossRef
40.
Zurück zum Zitat M. Pedergnana, P.R. Marpu, M.D. Mura, J.A. Benediktsson, L. Bruzzone, A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans. Geosci. Remote Sens. 51(6), 3514–3528 (2013)CrossRef M. Pedergnana, P.R. Marpu, M.D. Mura, J.A. Benediktsson, L. Bruzzone, A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans. Geosci. Remote Sens. 51(6), 3514–3528 (2013)CrossRef
41.
Zurück zum Zitat S. Subudhi, R. Narayan, P.K. Biswal, F. Dell’Acqua, A survey on superpixel segmentation as a pre-processing step in hyperspectral image analysis. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. (2021) S. Subudhi, R. Narayan, P.K. Biswal, F. Dell’Acqua, A survey on superpixel segmentation as a pre-processing step in hyperspectral image analysis. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. (2021)
42.
Zurück zum Zitat B. Cui, X. Xie, X. Ma, G. Ren, Y. Ma, Superpixel-based extended random walker for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 12, 1–11 (2018) B. Cui, X. Xie, X. Ma, G. Ren, Y. Ma, Superpixel-based extended random walker for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 12, 1–11 (2018)
43.
Zurück zum Zitat Y. Xu, B. Du, F. Zhang, L. Zhang, Hyperspectral image classification via a random patches network. ISPRS J. Photogramm. Remote Sens. 142, 344–357 (2018)CrossRef Y. Xu, B. Du, F. Zhang, L. Zhang, Hyperspectral image classification via a random patches network. ISPRS J. Photogramm. Remote Sens. 142, 344–357 (2018)CrossRef
44.
Zurück zum Zitat H. Petersson, D. Gustafsson, D. Bergström, Hyperspectral image analysis using deep learning: a review. Tools Appl. (2017) H. Petersson, D. Gustafsson, D. Bergström, Hyperspectral image analysis using deep learning: a review. Tools Appl. (2017)
45.
Zurück zum Zitat M. Ahmad, A.M. Khan, M. Mazzara, S. Distefano, M.S. Sarfraz, A fast and compact 3-D CNN for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 12, 1–5 (2021) M. Ahmad, A.M. Khan, M. Mazzara, S. Distefano, M.S. Sarfraz, A fast and compact 3-D CNN for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 12, 1–5 (2021)
46.
Zurück zum Zitat G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRef
47.
Zurück zum Zitat Z. Qin, L. Ni, Z. Tong, W. Qian, Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 1–5 (2015) Z. Qin, L. Ni, Z. Tong, W. Qian, Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12(11), 1–5 (2015)
48.
Zurück zum Zitat H. Fan, X. Gui-Song, H. Jingwen, Z. Liangpei, Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11), 14680–14707 (2015)CrossRef H. Fan, X. Gui-Song, H. Jingwen, Z. Liangpei, Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11), 14680–14707 (2015)CrossRef
49.
Zurück zum Zitat G.E. Hinton, S. Osindero, Y.W. Teh, A Fast Learning Algorithm for Deep Belief Nets (MIT Press, 2006) G.E. Hinton, S. Osindero, Y.W. Teh, A Fast Learning Algorithm for Deep Belief Nets (MIT Press, 2006)
50.
Zurück zum Zitat J. Xu, X. Lei, R. Hang, J. Wu, Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images (IEEE, 2014) J. Xu, X. Lei, R. Hang, J. Wu, Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images (IEEE, 2014)
51.
Zurück zum Zitat R.J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 2 (1998) R.J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1, 2 (1998)
52.
Zurück zum Zitat W. Hu, Y.Y. Huang, L. Wei, F. Zhang, H.C. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 5487 (2015)CrossRef W. Hu, Y.Y. Huang, L. Wei, F. Zhang, H.C. Li, Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 5487 (2015)CrossRef
53.
Zurück zum Zitat L. Peng, Z. Hui, K.B. Eom, Active deep learning for classification of hyperspectral images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10(2), 712–724 (2017)CrossRef L. Peng, Z. Hui, K.B. Eom, Active deep learning for classification of hyperspectral images. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 10(2), 712–724 (2017)CrossRef
54.
Zurück zum Zitat S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, J.A. Benediktsson, Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)CrossRef S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, J.A. Benediktsson, Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)CrossRef
55.
Zurück zum Zitat A. Sellami, I. Farah, Spectra-spatial graph-based deep restricted boltzmann networks for hyperspectral image classification, in Proceedings of the 2019 PhotonIcs and Electromagnetics Research Symposium-Spring (PIERS-Spring) (2019), pp. 1055–1062 A. Sellami, I. Farah, Spectra-spatial graph-based deep restricted boltzmann networks for hyperspectral image classification, in Proceedings of the 2019 PhotonIcs and Electromagnetics Research Symposium-Spring (PIERS-Spring) (2019), pp. 1055–1062
56.
Zurück zum Zitat Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef Y. Chen, Z. Lin, X. Zhao, G. Wang, Y. Gu, Deep learning-based classification of hyperspectral data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7(6), 2094–2107 (2014)CrossRef
57.
Zurück zum Zitat X. Zhang, Y. Liang, L. Chen, H. Ning, L. Jiao, H. Zhou, Recursive autoencoders-based unsupervised feature learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 99, 1–5 (2017) X. Zhang, Y. Liang, L. Chen, H. Ning, L. Jiao, H. Zhou, Recursive autoencoders-based unsupervised feature learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 99, 1–5 (2017)
58.
Zurück zum Zitat P. Zhou, J. Han, G. Cheng, B. Zhang, “Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(7), 4823–4833 (2019)CrossRef P. Zhou, J. Han, G. Cheng, B. Zhang, “Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(7), 4823–4833 (2019)CrossRef
59.
Zurück zum Zitat R. Lan, Z. Li, Z. Liu, T. Gu, X. Luo, Hyperspectral image classification using k-sparse denoising autoencoder and spectral–restricted spatial characteristics. Appl. Soft Comput. 74, 693–708 (2019)CrossRef R. Lan, Z. Li, Z. Liu, T. Gu, X. Luo, Hyperspectral image classification using k-sparse denoising autoencoder and spectral–restricted spatial characteristics. Appl. Soft Comput. 74, 693–708 (2019)CrossRef
60.
Zurück zum Zitat R. Hang, Q. Liu, D. Hong, P. Ghamisi, Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(8), 5384–5394 (2019)CrossRef R. Hang, Q. Liu, D. Hong, P. Ghamisi, Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 57(8), 5384–5394 (2019)CrossRef
61.
Zurück zum Zitat X. Zhang, Y. Sun, J. Kai, L. Chen, L. Jiao, H. Zhou, Spatial sequential recurrent neural network for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 12, 1–15 (2018) X. Zhang, Y. Sun, J. Kai, L. Chen, L. Jiao, H. Zhou, Spatial sequential recurrent neural network for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 12, 1–15 (2018)
62.
Zurück zum Zitat H. Zhang, Y. Li, Y. Zhang, Q. Shen, Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8(5), 438–447 (2017)CrossRef H. Zhang, Y. Li, Y. Zhang, Q. Shen, Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 8(5), 438–447 (2017)CrossRef
63.
Zurück zum Zitat Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef Y. Chen, H. Jiang, C. Li, X. Jia, P. Ghamisi, Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRef
64.
Zurück zum Zitat B. Sui, T. Jiang, Z. Zhang, X. Pan, ECGAN: an improved conditional generative adversarial network with edge detection to augment limited training data for the classification of remote sensing images with high spatial resolution. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 1311–1325 (2020)CrossRef B. Sui, T. Jiang, Z. Zhang, X. Pan, ECGAN: an improved conditional generative adversarial network with edge detection to augment limited training data for the classification of remote sensing images with high spatial resolution. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 1311–1325 (2020)CrossRef
65.
Zurück zum Zitat N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-End Object Detection with Transformers. pp. 213–229 N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-End Object Detection with Transformers. pp. 213–229
66.
Zurück zum Zitat D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, J. Chanussot, SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)CrossRef D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, J. Chanussot, SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)CrossRef
67.
Zurück zum Zitat H.Y. Yu, Z. Xu, K. Zheng, D.F. Hong, H. Yang, M.P. Song, MSTNet: a multilevel spectral-spatial transformer network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1152 (2022) H.Y. Yu, Z. Xu, K. Zheng, D.F. Hong, H. Yang, M.P. Song, MSTNet: a multilevel spectral-spatial transformer network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1152 (2022)
68.
Zurück zum Zitat M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inform. Process. Syst. 29, 956 (2016) M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inform. Process. Syst. 29, 956 (2016)
69.
Zurück zum Zitat Q. Nguyen, M. Hein, Optimization Landscape and Expressivity of Deep CNNs (2018) Q. Nguyen, M. Hein, Optimization Landscape and Expressivity of Deep CNNs (2018)
70.
Zurück zum Zitat M. Ahmad, S. Shabbir, R.A. Raza, M. Mazzara, A.M. Khan, Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for hyperspectral image classification. Optik Int. J. Light Electr. Opt. 1, 167757 (2021)CrossRef M. Ahmad, S. Shabbir, R.A. Raza, M. Mazzara, A.M. Khan, Artifacts of different dimension reduction methods on hybrid CNN feature hierarchy for hyperspectral image classification. Optik Int. J. Light Electr. Opt. 1, 167757 (2021)CrossRef
71.
Zurück zum Zitat M. Ahmad, M. Mazzara, S. Distefano, 3D/2D regularized CNN feature hierarchy for hyperspectral image classification. Remote Sens. (2021) M. Ahmad, M. Mazzara, S. Distefano, 3D/2D regularized CNN feature hierarchy for hyperspectral image classification. Remote Sens. (2021)
72.
Zurück zum Zitat C. Si, Y. Wang, Convolutional Neural Network and Convex Optimization C. Si, Y. Wang, Convolutional Neural Network and Convex Optimization
73.
Zurück zum Zitat D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, S. Bengio, Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(3), 625–660 (2010)MathSciNet D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, S. Bengio, Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(3), 625–660 (2010)MathSciNet
74.
Zurück zum Zitat F. Luo, L. Zhang, B. Du, L. Zhang, Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(8), 5336–5353 (2020)CrossRef F. Luo, L. Zhang, B. Du, L. Zhang, Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(8), 5336–5353 (2020)CrossRef
75.
Zurück zum Zitat P. Yang, L. Tong, B. Qian, Z. Gao, J. Yu, C. Xiao, Hyperspectral image classification with spectral and spatial graph using inductive representation learning network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 791–800 (2020)CrossRef P. Yang, L. Tong, B. Qian, Z. Gao, J. Yu, C. Xiao, Hyperspectral image classification with spectral and spatial graph using inductive representation learning network. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 791–800 (2020)CrossRef
76.
Zurück zum Zitat L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef L. Mou, X. Lu, X. Li, X.X. Zhu, Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(12), 8246–8257 (2020)CrossRef
77.
Zurück zum Zitat G. Shi, H. Huang, Z. Li, Y. Duan, Multi-manifold locality graph preserving analysis for hyperspectral image classification. Neurocomputing 388, 45–59 (2020)CrossRef G. Shi, H. Huang, Z. Li, Y. Duan, Multi-manifold locality graph preserving analysis for hyperspectral image classification. Neurocomputing 388, 45–59 (2020)CrossRef
78.
Zurück zum Zitat P. Sellars, A.I. Aviles-Rivero, C.-B. Schönlieb, Superpixel contracted graph-based learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 4180–4193 (2020)CrossRef P. Sellars, A.I. Aviles-Rivero, C.-B. Schönlieb, Superpixel contracted graph-based learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 4180–4193 (2020)CrossRef
79.
Zurück zum Zitat M. Sharma, M. Biswas, Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor. J. Supercomput. 77(6), 5528–5561 (2021)CrossRef M. Sharma, M. Biswas, Classification of hyperspectral remote sensing image via rotation-invariant local binary pattern-based weighted generalized closest neighbor. J. Supercomput. 77(6), 5528–5561 (2021)CrossRef
80.
Zurück zum Zitat S. Wan, C. Gong, S. Pan, J. Yang, J. Yang, Multi-Level Graph Convolutional Network with Automatic Graph Learning for Hyperspectral Image Classification (2020) S. Wan, C. Gong, S. Pan, J. Yang, J. Yang, Multi-Level Graph Convolutional Network with Automatic Graph Learning for Hyperspectral Image Classification (2020)
81.
Zurück zum Zitat S. Jia, X. Deng, M. Xu, J. Zhou, X. Jia, Superpixel-level weighted label propagation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(7), 5077–5091 (2020)CrossRef S. Jia, X. Deng, M. Xu, J. Zhou, X. Jia, Superpixel-level weighted label propagation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(7), 5077–5091 (2020)CrossRef
82.
Zurück zum Zitat Q. Liu, L. Xiao, J. Yang, Z. Wei, CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(10), 8657–8671 (2020)CrossRef Q. Liu, L. Xiao, J. Yang, Z. Wei, CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(10), 8657–8671 (2020)CrossRef
83.
Zurück zum Zitat B. Liu, K. Gao, A. Yu, W. Guo, R. Wang, X. Zuo, Semisupervised graph convolutional network for hyperspectral image classification. J. Appl. Remote. Sens. 14(2), 026516 (2020)CrossRef B. Liu, K. Gao, A. Yu, W. Guo, R. Wang, X. Zuo, Semisupervised graph convolutional network for hyperspectral image classification. J. Appl. Remote. Sens. 14(2), 026516 (2020)CrossRef
84.
Zurück zum Zitat M. Lin, W. Jing, D. Di, G. Chen, H. Song, Context-aware attentional graph U-Net for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021) M. Lin, W. Jing, D. Di, G. Chen, H. Song, Context-aware attentional graph U-Net for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)
85.
Zurück zum Zitat F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)CrossRef F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)CrossRef
86.
Zurück zum Zitat M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, E.P. Xing, Rethinking Knowledge Graph Propagation for Zero-Shot Learning (2018) M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, E.P. Xing, Rethinking Knowledge Graph Propagation for Zero-Shot Learning (2018)
87.
Zurück zum Zitat S. Zhang, S. Yan, X. He, LatentGNN: Learning Efficient Non-local Relations for Visual Recognition (2019) S. Zhang, S. Yan, X. He, LatentGNN: Learning Efficient Non-local Relations for Visual Recognition (2019)
88.
Zurück zum Zitat X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, Y. Ye, Heterogeneous Graph Attention Network (2019) X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, Y. Ye, Heterogeneous Graph Attention Network (2019)
89.
Zurück zum Zitat M.W.T.N. Kipf, Semi-Supervised Classification with Graph Convolutional Networks (2016) M.W.T.N. Kipf, Semi-Supervised Classification with Graph Convolutional Networks (2016)
90.
Zurück zum Zitat Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated Graph Sequence Neural Networks (2015) Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated Graph Sequence Neural Networks (2015)
91.
Zurück zum Zitat L. Chi, G. Tian, Y. Mu, L. Xie, Q. Tian, Fast non-local neural networks with spectral residual learning, in Proceeedings of the 27th ACM International Conference (2019) L. Chi, G. Tian, Y. Mu, L. Xie, Q. Tian, Fast non-local neural networks with spectral residual learning, in Proceeedings of the 27th ACM International Conference (2019)
92.
Zurück zum Zitat A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need (2017) A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need (2017)
93.
Zurück zum Zitat W. Meng, W. Fu, S. Hao, H. Liu, X. Wu, Learning on big graph: label inference and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng. 5, 1 (2017) W. Meng, W. Fu, S. Hao, H. Liu, X. Wu, Learning on big graph: label inference and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng. 5, 1 (2017)
94.
Zurück zum Zitat A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef A. Qin, Z. Shang, J. Tian, Y. Wang, T. Zhang, Y.Y. Tang, Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 16(2), 241–245 (2018)CrossRef
95.
Zurück zum Zitat J. Chen, L. Jiao, X. Liu, L. Li, F. Liu, S. Yang, Automatic graph learning convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)CrossRef J. Chen, L. Jiao, X. Liu, L. Li, F. Liu, S. Yang, Automatic graph learning convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)CrossRef
96.
Zurück zum Zitat A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 18(1), 157–161 (2020)CrossRef A. Sha, B. Wang, X. Wu, L. Zhang, Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geosci. Remote Sens. Lett. 18(1), 157–161 (2020)CrossRef
97.
Zurück zum Zitat S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2019)CrossRef S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(5), 3162–3177 (2019)CrossRef
98.
Zurück zum Zitat Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef Y. Ding, X. Zhao, Z. Zhang, W. Cai, N. Yang, Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 4561–4572 (2021)CrossRef
99.
Zurück zum Zitat Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, R. Gloaguen, Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images. IEEE Trans. Geosci. Remote Sens. (2022) Y. Cai, Z. Zhang, P. Ghamisi, Y. Ding, X. Liu, Z. Cai, R. Gloaguen, Superpixel contracted neighborhood contrastive subspace clustering network for hyperspectral images. IEEE Trans. Geosci. Remote Sens. (2022)
100.
Zurück zum Zitat Y. Zhang, G. Cao, B. Wang, X. Li, P.Y.O. Amoako, A. Shafique, Dual sparse representation graph-based copropagation for semisupervised hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2021) Y. Zhang, G. Cao, B. Wang, X. Li, P.Y.O. Amoako, A. Shafique, Dual sparse representation graph-based copropagation for semisupervised hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 60, 1–17 (2021)
101.
Zurück zum Zitat Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Cai, C. Yu, N. Yang, W. Cai, Multi-feature fusion: graph neural network and CNN combining for hyperspectral image classification. Neurocomputing (2022) Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Cai, C. Yu, N. Yang, W. Cai, Multi-feature fusion: graph neural network and CNN combining for hyperspectral image classification. Neurocomputing (2022)
102.
Zurück zum Zitat Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification. Inform. Sci. 602, 201–219 (2022)CrossRef Y. Ding, Z. Zhang, X. Zhao, D. Hong, W. Li, W. Cai, Y. Zhan, AF2GNN: graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification. Inform. Sci. 602, 201–219 (2022)CrossRef
103.
Zurück zum Zitat M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, in Proceedings of the 2005 IEEE International Joint Conference on Neural Networks (2005), pp. 729–734 M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, in Proceedings of the 2005 IEEE International Joint Conference on Neural Networks (2005), pp. 729–734
104.
Zurück zum Zitat C. Gallicchio, A. Micheli, Graph echo state networks, in The 2010 International Joint Conference on Neural Networks (IJCNN) (2010), pp. 1–8 C. Gallicchio, A. Micheli, Graph echo state networks, in The 2010 International Joint Conference on Neural Networks (IJCNN) (2010), pp. 1–8
105.
Zurück zum Zitat J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral Networks and Locally Connected Networks on Graphs (2013) J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral Networks and Locally Connected Networks on Graphs (2013)
106.
Zurück zum Zitat M. Henaff, J. Bruna, Y. Lecun, Deep convolutional networks on graph-structured data. Comput. Sci. (2015) M. Henaff, J. Bruna, Y. Lecun, Deep convolutional networks on graph-structured data. Comput. Sci. (2015)
107.
Zurück zum Zitat A. Micheli, Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20(3), 498–511 (2009)CrossRef A. Micheli, Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Netw. 20(3), 498–511 (2009)CrossRef
108.
Zurück zum Zitat J. Atwood, D. Towsley, Diffusion-convolutional neural networks. Comput. Sci. (2015) J. Atwood, D. Towsley, Diffusion-convolutional neural networks. Comput. Sci. (2015)
109.
Zurück zum Zitat M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in International Conference on Machine Learning, PMLR (2016), pp. 2014–2023 M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural networks for graphs, in International Conference on Machine Learning, PMLR (2016), pp. 2014–2023
110.
Zurück zum Zitat J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International conference on machine learning. PMLR (2017), pp. 1263–1272 J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International conference on machine learning. PMLR (2017), pp. 1263–1272
111.
Zurück zum Zitat Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1, 32 (2021)MathSciNet Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1, 32 (2021)MathSciNet
112.
Zurück zum Zitat D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRef D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Sig. Process. Mag. 30(3), 83–98 (2013)CrossRef
113.
Zurück zum Zitat S.G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (China Machine Press, 2009) S.G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (China Machine Press, 2009)
114.
Zurück zum Zitat L. Li, Z. Gan, Y. Cheng, J. Liu, Relation-aware graph attention network for visual question answering, in Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 10313–10322 L. Li, Z. Gan, Y. Cheng, J. Liu, Relation-aware graph attention network for visual question answering, in Proceedings of the IEEE/CVF International Conference on Computer Vision (2019), pp. 10313–10322
115.
Zurück zum Zitat J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International Conference on Machine Learning, PMLR (2017) J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, in International Conference on Machine Learning, PMLR (2017)
116.
Zurück zum Zitat G. Li, M. Müller, G. Qian, I.C. Delgadillo, A. Abualshour, A. Thabet, B. Ghanem, DeepGCNs: making GCNs go as deep as CNNs. IEEE Trans. Pattern Anal. Mach. Intell. (2019) G. Li, M. Müller, G. Qian, I.C. Delgadillo, A. Abualshour, A. Thabet, B. Ghanem, DeepGCNs: making GCNs go as deep as CNNs. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
117.
Zurück zum Zitat Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)CrossRef Y. Wang, Y. Sun, Z. Liu, S.E. Sarma, M.M. Bronstein, J.M. Solomon, Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 38(5), 1–12 (2019)CrossRef
118.
Zurück zum Zitat P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph Attention Networks (2017) P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph Attention Networks (2017)
119.
Zurück zum Zitat N. Peng, H. Poon, C. Quirk, K. Toutanova, W.-T. Yih, Cross-sentence n-ary relation extraction with graph LSTMS. Trans. Assoc. Comput. Lingu. 5, 101–115 (2017) N. Peng, H. Poon, C. Quirk, K. Toutanova, W.-T. Yih, Cross-sentence n-ary relation extraction with graph LSTMS. Trans. Assoc. Comput. Lingu. 5, 101–115 (2017)
120.
Zurück zum Zitat D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inform. Process. Syst. 28, 598 (2015) D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inform. Process. Syst. 28, 598 (2015)
Metadaten
Titel
Introduction
verfasst von
Yao Ding
Zhili Zhang
Haojie Hu
Fang He
Shuli Cheng
Yijun Zhang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-8009-9_1