Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Debabrata Das

Erschienen in: Algal Biorefinery: An Integrated Approach

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The primitive earth consisted of an atmosphere filled with CO2 which could not sustain any life forms. The advent of life on earth was possible due to Cyanobacterium and algae. They sequestered the atmospheric CO2 via photosynthesis and in turn released molecular oxygen. This led to a rapid decrease in CO2 levels as a result of which life started evolving on earth. Time has come once again that these humble organisms save us from the threat of global warming. The conversion of solar energy to chemical energy is the major attribute of all photosynthetic organisms including algae. The energy gets stored in the cells as oils, carbohydrates and proteins. The conversion of solar energy to chemical energy largely depends on the photosynthetic efficiency of the organism. Algae are the most photosynthetically efficient organisms on earth which makes them a prospective feedstock for different purposes. The oil production by microalgae is much higher as compared to any other oil crop. Algal biotechnology could provide a plausible solution to many problems ranging from green house gas emission reduction to treatment of wastewater and generation of value added products. Algae are diverse in nature and can be found from unicellular to complex and differentiated levels. They generally inhabit damp surroundings and are abundant in terrestrial as well as freshwater and marine environments. Similar to all photosynthetic organisms, algae require sunlight, carbon dioxide and water for their growth. The affinity of CO2 for microalgae is very high which makes them a prospect for CO2 mitigation. The productivity of oil per acre is the highest in microalgae and it can surpass any other oil crop for biodiesel production. Moreover, it does not require arable land for growth and can be sustained on wastewater (Demirbas A, Energy Educ Sci Technol A 23:1–13, 2009a).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agrawal, R., Singh, N.R., Ribeiro, F.H. and Delgass, W.N. (2007). Sustainable fuel for the transportation sector. Proceedings to the National Academy of Sciences USA, 104, 4828–4833. Agrawal, R., Singh, N.R., Ribeiro, F.H. and Delgass, W.N. (2007). Sustainable fuel for the transportation sector. Proceedings to the National Academy of Sciences USA, 104, 4828–4833.
Zurück zum Zitat Allard, B., Templier, J. and Largeau, C. (1998). An improved method for the isolation of artifact-free algaenans from microalgae. Organic Geochemistry, 28(9–10), 543–548.CrossRef Allard, B., Templier, J. and Largeau, C. (1998). An improved method for the isolation of artifact-free algaenans from microalgae. Organic Geochemistry, 28(9–10), 543–548.CrossRef
Zurück zum Zitat Alves, M.G.d.C.F., Nobre, L.T.D.B., Monteiro, N.d.K.V., Moura, G.E.D.d.D., Dore, C.M.P.G., de Medeiros, V.P. and Leite, E.L. (2012). Effects of heparinoids from algae on hemostasis and their action on the cycle cell. Biomed Prev Nutr. 2, 163–168. Alves, M.G.d.C.F., Nobre, L.T.D.B., Monteiro, N.d.K.V., Moura, G.E.D.d.D., Dore, C.M.P.G., de Medeiros, V.P. and Leite, E.L. (2012). Effects of heparinoids from algae on hemostasis and their action on the cycle cell. Biomed Prev Nutr. 2, 163–168.
Zurück zum Zitat Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Rosa, D.E. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.CrossRef Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A. and Rosa, D.E. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.CrossRef
Zurück zum Zitat Becker, W. (2007). Microalgae in Human and Animal Nutrition. Handbook of Microalgal Culture: Biotechnology and Applied Phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK. pp 312–351. Becker, W. (2007). Microalgae in Human and Animal Nutrition. Handbook of Microalgal Culture: Biotechnology and Applied Phycology (ed A. Richmond), Blackwell Publishing Ltd, Oxford, UK. pp 312–351.
Zurück zum Zitat Benemann, J.R. and Oswald, W.J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. DOE/PC/93204 – T5. Benemann, J.R. and Oswald, W.J. (1996). Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. DOE/PC/93204 – T5.
Zurück zum Zitat Benli, H. and Durmus, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Building, 41, 220–228.CrossRef Benli, H. and Durmus, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Building, 41, 220–228.CrossRef
Zurück zum Zitat Bermejo Roman, R., Alvarez-Pez, J.M., Acien Fernandez, F.G. and Molina Grima, E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1): 73–85.CrossRef Bermejo Roman, R., Alvarez-Pez, J.M., Acien Fernandez, F.G. and Molina Grima, E. (2002). Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology, 93(1): 73–85.CrossRef
Zurück zum Zitat Biller, P. and Ross, A.B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol, 102, 215–225.CrossRef Biller, P. and Ross, A.B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol, 102, 215–225.CrossRef
Zurück zum Zitat Boichenko, V.A. and Hoffmann, P. (1994). Photosynthetic hydrogen-production in prokaryotes and eukaryotes—occurrence, mechanism, and functions. Photosynthetica, 30, 527–552. Boichenko, V.A. and Hoffmann, P. (1994). Photosynthetic hydrogen-production in prokaryotes and eukaryotes—occurrence, mechanism, and functions. Photosynthetica, 30, 527–552.
Zurück zum Zitat Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557–577.CrossRef Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and sustainable energy reviews, 14(2), 557–577.CrossRef
Zurück zum Zitat Bunt, J.S. (1961). Nitrogen fixing blue-green algae in Australian soils. Nature, 192, 479–480.CrossRef Bunt, J.S. (1961). Nitrogen fixing blue-green algae in Australian soils. Nature, 192, 479–480.CrossRef
Zurück zum Zitat Campbell, C.J. (1997). The coming oil crisis. Multi-science Publishing Company and Petroconsultants, S.A Essex. Campbell, C.J. (1997). The coming oil crisis. Multi-science Publishing Company and Petroconsultants, S.A Essex.
Zurück zum Zitat Campbell, M. N. (2008). Biodiesel: algae as a renewable source for liquid fuel. Guelph Engineering Journal, 1(1), 2–7. Campbell, M. N. (2008). Biodiesel: algae as a renewable source for liquid fuel. Guelph Engineering Journal, 1(1), 2–7.
Zurück zum Zitat Cantrell, K.B., Ducey, T., Ro, K.S. and Hunt, P.G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresour Technol, 99, 7941–7953.CrossRef Cantrell, K.B., Ducey, T., Ro, K.S. and Hunt, P.G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresour Technol, 99, 7941–7953.CrossRef
Zurück zum Zitat Carlsson, A.S., van Beilen, J.B., Moller, R. and Clayton, D. (2007). Micro- and macro-algae utility for industrial applications. In: Dianna, B. (Ed). Outputs from the EPOBIO project. CPL Press, UK. Carlsson, A.S., van Beilen, J.B., Moller, R. and Clayton, D. (2007). Micro- and macro-algae utility for industrial applications. In: Dianna, B. (Ed). Outputs from the EPOBIO project. CPL Press, UK.
Zurück zum Zitat Carvalho, A.P., Meireles, L.A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Progress, 22, 1490–1506.CrossRef Carvalho, A.P., Meireles, L.A. and Malcata, F.X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnol Progress, 22, 1490–1506.CrossRef
Zurück zum Zitat Chakdar, H. and Pabbi, S. (2012). Extraction and purification of phycoerythrin from Anabaena variabilis (CCC421). Phykos., 42(1): 25–31. Chakdar, H. and Pabbi, S. (2012). Extraction and purification of phycoerythrin from Anabaena variabilis (CCC421). Phykos., 42(1): 25–31.
Zurück zum Zitat Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B. and Ruan, R. (2009). Review of the biological and engineering aspects of algae to biofuels approach. Int J Agri Biological Eng, 2(4), 1–24. Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B. and Ruan, R. (2009). Review of the biological and engineering aspects of algae to biofuels approach. Int J Agri Biological Eng, 2(4), 1–24.
Zurück zum Zitat Chiao-Wei, C., Siew-Ling, H. and Ching-Lee, W. (2011). Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African J Biotechnol., 10(64), 14125–14131. Chiao-Wei, C., Siew-Ling, H. and Ching-Lee, W. (2011). Antibacterial activity of Sargassum polycystum C. Agardh and Padina australis Hauck (Phaeophyceae). African J Biotechnol., 10(64), 14125–14131.
Zurück zum Zitat Chiellini, E., Cinelli, P., Ilieva, V.I. and Martera, M. (2008). Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromolecules, 9(3), 1007–1013.CrossRef Chiellini, E., Cinelli, P., Ilieva, V.I. and Martera, M. (2008). Biodegradable thermoplastic composites based on polyvinyl alcohol and algae. Biomacromolecules, 9(3), 1007–1013.CrossRef
Zurück zum Zitat Chisti, Y. (2006). MICROALGAE AS SUSTAINABLE CELL FACTORIES. Environmental Engineering & Management Journal (EEMJ), 5(3). Chisti, Y. (2006). MICROALGAE AS SUSTAINABLE CELL FACTORIES. Environmental Engineering & Management Journal (EEMJ), 5(3).
Zurück zum Zitat Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.CrossRef
Zurück zum Zitat Chisti, Y. (2008a). Biodiesel from microalgae beats bioethanol. Trends in Biotechnol, 26, 126–131.CrossRef Chisti, Y. (2008a). Biodiesel from microalgae beats bioethanol. Trends in Biotechnol, 26, 126–131.CrossRef
Zurück zum Zitat Chisti, Y. (2008b). Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants. Trends in Biotechnol, 26, 351–352.CrossRef Chisti, Y. (2008b). Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants. Trends in Biotechnol, 26, 351–352.CrossRef
Zurück zum Zitat Chisti, Y. (2010). Fuels from microalgae. Biofuels, 1(2), 233–235. Chisti, Y. (2010). Fuels from microalgae. Biofuels, 1(2), 233–235.
Zurück zum Zitat Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Sc Technol, 53, 113–119.CrossRef Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006). Settling characteristics of problem algae in the water treatment process. Water Sc Technol, 53, 113–119.CrossRef
Zurück zum Zitat Clarens, A.F., Resurreccion, E., White, M. and Colosi, A. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Env Sc Technol, 44, 1813–1819.CrossRef Clarens, A.F., Resurreccion, E., White, M. and Colosi, A. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Env Sc Technol, 44, 1813–1819.CrossRef
Zurück zum Zitat Clark, J. and Deswarte, F. (2008). Introduction to chemicals from biomass. Wiley Series in Renewable Resources. ISBN978-0-470-05805. Clark, J. and Deswarte, F. (2008). Introduction to chemicals from biomass. Wiley Series in Renewable Resources. ISBN978-0-470-05805.
Zurück zum Zitat Costa, J.A.V. and Morais, M.G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol, 102, 2–9.CrossRef Costa, J.A.V. and Morais, M.G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol, 102, 2–9.CrossRef
Zurück zum Zitat Das, D. (1985). Ph.D. Thesis on “Optimization of methane production from agricultural residues”. IIT Delhi, India. Das, D. (1985). Ph.D. Thesis on “Optimization of methane production from agricultural residues”. IIT Delhi, India.
Zurück zum Zitat Das, D. (2009). Advances in biological hydrogen production processes: An approach towards commercialization. Int J Hydrogen Energy, 34, 7349–7357.CrossRef Das, D. (2009). Advances in biological hydrogen production processes: An approach towards commercialization. Int J Hydrogen Energy, 34, 7349–7357.CrossRef
Zurück zum Zitat Das, D. and Veziroğlu, T.N. (2001). Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy, 26 (1), 13–28.CrossRef Das, D. and Veziroğlu, T.N. (2001). Hydrogen production by biological processes: A survey of literature. Int J Hydrogen Energy, 26 (1), 13–28.CrossRef
Zurück zum Zitat Dasgupta, C.N., Gilbert, J.J., Lindblad, P., Heidorn, T., Borgvang, S.A., Skjanes, K. and Das, D. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy, 35(19), 10218-10238.CrossRef Dasgupta, C.N., Gilbert, J.J., Lindblad, P., Heidorn, T., Borgvang, S.A., Skjanes, K. and Das, D. (2010). Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy, 35(19), 10218-10238.CrossRef
Zurück zum Zitat Davis, R., Aden, A. and Pienkos, P.T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy, 88(10), 3524–3531.CrossRef Davis, R., Aden, A. and Pienkos, P.T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy, 88(10), 3524–3531.CrossRef
Zurück zum Zitat de Morais, M.G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J.A.V. and Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol, 101(8), 2872–2876.CrossRef de Morais, M.G., Stillings, C., Dersch, R., Rudisile, M., Pranke, P., Costa, J.A.V. and Wendorff, J. (2010). Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol, 101(8), 2872–2876.CrossRef
Zurück zum Zitat De Rosa, S.C., Brenchley, J.M. and Roederer, M. (2003). Beyond six colours: A new era in flow cytometry. Nat Med., 9, 112–117.CrossRef De Rosa, S.C., Brenchley, J.M. and Roederer, M. (2003). Beyond six colours: A new era in flow cytometry. Nat Med., 9, 112–117.CrossRef
Zurück zum Zitat deB Richter, Jr, D., Jenkins, J.H., Karakash, J.T., Knight, J., McCreery, L.R. and Nemestothy, K.P. (2009). Wood energy in America. Science, 323, 1432–1433. deB Richter, Jr, D., Jenkins, J.H., Karakash, J.T., Knight, J., McCreery, L.R. and Nemestothy, K.P. (2009). Wood energy in America. Science, 323, 1432–1433.
Zurück zum Zitat Del Campo, J. A., Moreno, J., Rodrıguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51–59. Del Campo, J. A., Moreno, J., Rodrıguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta). Journal of Biotechnology, 76(1), 51–59.
Zurück zum Zitat Delrue, F., Setier, P.A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G. and Froment, A.K. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol, 111, 191–200.CrossRef Delrue, F., Setier, P.A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G. and Froment, A.K. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol, 111, 191–200.CrossRef
Zurück zum Zitat Demirbas, A.H. (2009a). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Sc Technol A, 23, 1–13. Demirbas, A.H. (2009a). Inexpensive oil and fats feedstocks for production of biodiesel. Energy Education Sc Technol A, 23, 1–13.
Zurück zum Zitat Demirbas, A. (2009b). Production of biodiesel from algae oils. Energy Sources A, 31, 163–168.CrossRef Demirbas, A. (2009b). Production of biodiesel from algae oils. Energy Sources A, 31, 163–168.CrossRef
Zurück zum Zitat Dickinson, J., Jackson, T., Matthews, M. and Cripps, A. (2009). The economic and environmental optimisation of integrating ground source energy systems into buildings. Energy, 34, 2215–2222.CrossRef Dickinson, J., Jackson, T., Matthews, M. and Cripps, A. (2009). The economic and environmental optimisation of integrating ground source energy systems into buildings. Energy, 34, 2215–2222.CrossRef
Zurück zum Zitat Domozych, D.S., Kort, S., Benton, S. and Yu, T. (2005). The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms, 2(2), 129–144.CrossRef Domozych, D.S., Kort, S., Benton, S. and Yu, T. (2005). The extracellular polymeric substance of the green alga Penium margaritaceum and its role in biofilm formation. Biofilms, 2(2), 129–144.CrossRef
Zurück zum Zitat Douskova, I., Doucha, J., Machat, J., Novak, P., Umysova, D., Vitova, M. and Zachleder, V. (2008). Microalgae as a means for converting flue gas CO2 into biomass with a high content of starch. Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy. Guimarães, Portugal, April 6th–9th. Douskova, I., Doucha, J., Machat, J., Novak, P., Umysova, D., Vitova, M. and Zachleder, V. (2008). Microalgae as a means for converting flue gas CO2 into biomass with a high content of starch. Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy. Guimarães, Portugal, April 6th–9th.
Zurück zum Zitat Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in Food Science & Technology, 16(9), 389–406.CrossRef Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., & Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?. Trends in Food Science & Technology, 16(9), 389–406.CrossRef
Zurück zum Zitat Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G. (1996). Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol, 57–58, 223–231. Dunahay, T.G., Jarvis, E.E., Dais, S.S. and Roessler, P.G. (1996). Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol, 57–58, 223–231.
Zurück zum Zitat Finney, K. F., Pomeranz, Y., & Bruinsma, B. L. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal chemistry (USA). Finney, K. F., Pomeranz, Y., & Bruinsma, B. L. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal chemistry (USA).
Zurück zum Zitat Fleurence, J., Coeur, C.L., Mabeau, S., Maurice, M., & Landrein, A. (1995). Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. Journal of Applied Phycology 7, 577–582.CrossRef Fleurence, J., Coeur, C.L., Mabeau, S., Maurice, M., & Landrein, A. (1995). Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. Journal of Applied Phycology 7, 577–582.CrossRef
Zurück zum Zitat Franklin, S.E. and Mayfield, S.P. (2005). Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opinion on Biological Therapy, 5(2), 225–235.CrossRef Franklin, S.E. and Mayfield, S.P. (2005). Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opinion on Biological Therapy, 5(2), 225–235.CrossRef
Zurück zum Zitat Gallagher, B.J. (2011). The economics of producing biodiesel from algae. Renewable Energy, 36, 158–162.CrossRef Gallagher, B.J. (2011). The economics of producing biodiesel from algae. Renewable Energy, 36, 158–162.CrossRef
Zurück zum Zitat Ghirardi, M.L., Kosourov, S., Tsygankov, A. and Seibert, M. (2000). Two-phase photobiological algal H2-production system. In: Proceedings of the 2000 U.S. DOE hydrogen program review. National Renewable Energy Laboratory, Golden, Colorado, pp 1–13. Ghirardi, M.L., Kosourov, S., Tsygankov, A. and Seibert, M. (2000). Two-phase photobiological algal H2-production system. In: Proceedings of the 2000 U.S. DOE hydrogen program review. National Renewable Energy Laboratory, Golden, Colorado, pp 1–13.
Zurück zum Zitat Glazer, A.N. and Stryer, L. (1984). Phycofluor probes. Trends Biochem Sci. 9, 423–427.CrossRef Glazer, A.N. and Stryer, L. (1984). Phycofluor probes. Trends Biochem Sci. 9, 423–427.CrossRef
Zurück zum Zitat Gong, Y. and Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Letters, 33, 1269–1284.CrossRef Gong, Y. and Jiang, M. (2011). Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Letters, 33, 1269–1284.CrossRef
Zurück zum Zitat Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W. and Flynn, K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.CrossRef Greenwell, H.C., Laurens, L.M.L., Shields, R.J., Lovitt, R.W. and Flynn, K.J. (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society Interface, 7, 703–726.CrossRef
Zurück zum Zitat Guedes, A.C., Amaro, H.M. and Malcata, F.X. (2011). Microalgae as sources of high added-value compounds: A brief review of recent work. Biotechnol Progress, 27(3), 597–613.CrossRef Guedes, A.C., Amaro, H.M. and Malcata, F.X. (2011). Microalgae as sources of high added-value compounds: A brief review of recent work. Biotechnol Progress, 27(3), 597–613.CrossRef
Zurück zum Zitat Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J.H., Posten, C. and Kruse, O. (2007). Photosynthetic biomass and H2 production by green algae: From bioengineering to bioreactor scale-up. Physiology Plant, 131, 10–21.CrossRef Hankamer, B., Lehr, F., Rupprecht, J., Mussgnug, J.H., Posten, C. and Kruse, O. (2007). Photosynthetic biomass and H2 production by green algae: From bioengineering to bioreactor scale-up. Physiology Plant, 131, 10–21.CrossRef
Zurück zum Zitat Hansel, A. and Lindblad, P. (1998). Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbial Biotechnol, 50, 153–160.CrossRef Hansel, A. and Lindblad, P. (1998). Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbial Biotechnol, 50, 153–160.CrossRef
Zurück zum Zitat Harun, R., Danquah, M.K. and Forde, G.M. (2010b). Microbial biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol, 85, 199–203. Harun, R., Danquah, M.K. and Forde, G.M. (2010b). Microbial biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol, 85, 199–203.
Zurück zum Zitat Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A. and Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microbial Cell Factories. 10(81), 1–6. Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A. and Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microbial Cell Factories. 10(81), 1–6.
Zurück zum Zitat Hirano, A., Ryohei, U., Shin, H. and Yasuyuki, O. (1997). CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22, 137–142.CrossRef Hirano, A., Ryohei, U., Shin, H. and Yasuyuki, O. (1997). CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22, 137–142.CrossRef
Zurück zum Zitat Holdt, S.L., Kraan, S., (2011). Bioactive compounds in seaweed: functional food applications and legislation, J Appl Phycol, 23:543–597.CrossRef Holdt, S.L., Kraan, S., (2011). Bioactive compounds in seaweed: functional food applications and legislation, J Appl Phycol, 23:543–597.CrossRef
Zurück zum Zitat Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J, 54, 621–639.CrossRef Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J, 54, 621–639.CrossRef
Zurück zum Zitat Huntley, M.E. and Redalje, D.G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaption Strategies for Global Change, 12, 573–608.CrossRef Huntley, M.E. and Redalje, D.G. (2007). CO2 mitigation and renewable oil from photosynthetic microbes: A new appraisal. Mitigation and Adaption Strategies for Global Change, 12, 573–608.CrossRef
Zurück zum Zitat Izydorczyk, K., Tarczynska, M., Jurczak, T., Mrowczynski, J. and Zalewski, M. (2005). Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ Tox., 20, 425–430.CrossRef Izydorczyk, K., Tarczynska, M., Jurczak, T., Mrowczynski, J. and Zalewski, M. (2005). Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ Tox., 20, 425–430.CrossRef
Zurück zum Zitat Janssen, M., Tramper, J., Mur, L. R., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and bioengineering, 81(2), 193–210.CrossRef Janssen, M., Tramper, J., Mur, L. R., & Wijffels, R. H. (2003). Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and bioengineering, 81(2), 193–210.CrossRef
Zurück zum Zitat Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3–4), 261–266. (Lone et al., 2005) Jespersen, L., Strømdahl, L. D., Olsen, K., & Skibsted, L. H. (2005). Heat and light stability of three natural blue colorants for use in confectionery and beverages. European Food Research and Technology, 220(3–4), 261–266. (Lone et al., 2005)
Zurück zum Zitat Jha, M.N., Prasad, A.N., Sharma, S.G. and Bharti, R.C. (2001). Effects of fertilization rate and crop rotation on diazotrophic cyanobacteria. World J Microbiol Biotechnol, 17, 463.CrossRef Jha, M.N., Prasad, A.N., Sharma, S.G. and Bharti, R.C. (2001). Effects of fertilization rate and crop rotation on diazotrophic cyanobacteria. World J Microbiol Biotechnol, 17, 463.CrossRef
Zurück zum Zitat Jiang, Y., Chen, F., & Liang, S.Z. (1999). Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochemistry 34, 633–637.CrossRef Jiang, Y., Chen, F., & Liang, S.Z. (1999). Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochemistry 34, 633–637.CrossRef
Zurück zum Zitat John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour Technol, 102(1), 186–193.CrossRef John, R.P., Anisha, G.S., Nampoothiri, K.M. and Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour Technol, 102(1), 186–193.CrossRef
Zurück zum Zitat Kanazawa, K. (2012). High bioavailability and diverse biofunctions of fucoxanthin in brown algae. Nippon Shokuhin Kagaku Kogaku Kaishi, 59(2), 49–55.CrossRef Kanazawa, K. (2012). High bioavailability and diverse biofunctions of fucoxanthin in brown algae. Nippon Shokuhin Kagaku Kogaku Kaishi, 59(2), 49–55.CrossRef
Zurück zum Zitat Kaushik, B.D. (1995). Cyanobacterial response to salinity and amelioration technology. In: Rice management biotechnology (ed. S. Kannaiyan). pp. 323–329, Associated Publishing Co., New Delhi. Kaushik, B.D. (1995). Cyanobacterial response to salinity and amelioration technology. In: Rice management biotechnology (ed. S. Kannaiyan). pp. 323–329, Associated Publishing Co., New Delhi.
Zurück zum Zitat Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical reviews in food science & nutrition, 30(6), 555–573.CrossRef Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical reviews in food science & nutrition, 30(6), 555–573.CrossRef
Zurück zum Zitat Khan, S.A., Rashmi Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361–2372.CrossRef Khan, S.A., Rashmi Hussain, M.Z., Prasad, S. and Banerjee, U.C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361–2372.CrossRef
Zurück zum Zitat Khan, Z.U.M., Tahmida Begum, Z.N., Mandal, R. and Hossain, M.Z. (1994). Cyanobacteria in rice soils. World Journal of Microbiology and Biotechnology, 10, 296–298.CrossRef Khan, Z.U.M., Tahmida Begum, Z.N., Mandal, R. and Hossain, M.Z. (1994). Cyanobacteria in rice soils. World Journal of Microbiology and Biotechnology, 10, 296–298.CrossRef
Zurück zum Zitat Kheshgi, H.S., Prince, R.C. and Marland, G. (2000). The potential of biomass fuels in the context of global climate change. Annual Reviews in Energy and Environment, 25, 199–244.CrossRef Kheshgi, H.S., Prince, R.C. and Marland, G. (2000). The potential of biomass fuels in the context of global climate change. Annual Reviews in Energy and Environment, 25, 199–244.CrossRef
Zurück zum Zitat Lee, D.H. (2011). Algal biodiesel economy and competition among bio-fuels. Bioresource Technology, 102, 43–49.CrossRef Lee, D.H. (2011). Algal biodiesel economy and competition among bio-fuels. Bioresource Technology, 102, 43–49.CrossRef
Zurück zum Zitat Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820. Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820.
Zurück zum Zitat Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F. and Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. Int J Hydrogen Energy, 27, 1271–1281.CrossRef Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F. and Tsygankov, A. (2002). Photoproduction of H2 by wildtype Anabaena sp. PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. Int J Hydrogen Energy, 27, 1271–1281.CrossRef
Zurück zum Zitat Lobban, C.S. and Harrison, P.J. (1997). Seaweed ecology and physiology, IX. Cambridge University Press. Lobban, C.S. and Harrison, P.J. (1997). Seaweed ecology and physiology, IX. Cambridge University Press.
Zurück zum Zitat Mata, T.M., Martins, A.A. and Caetano, N.S. (2009). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRef Mata, T.M., Martins, A.A. and Caetano, N.S. (2009). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRef
Zurück zum Zitat Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217–232.CrossRef Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217–232.CrossRef
Zurück zum Zitat Matsumoto, M., Hiroko, Y., Nobukazu, S., Hiroshi, O. and Tadashi, M. (2003). Saccharification of marine microalgae using marine bacteria for ethanol production. Applied Biochemistry and Biotechnology, 105, 247–254.CrossRef Matsumoto, M., Hiroko, Y., Nobukazu, S., Hiroshi, O. and Tadashi, M. (2003). Saccharification of marine microalgae using marine bacteria for ethanol production. Applied Biochemistry and Biotechnology, 105, 247–254.CrossRef
Zurück zum Zitat Melis, A. and Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127, 740–748.CrossRef Melis, A. and Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127, 740–748.CrossRef
Zurück zum Zitat Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L. and Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–136.CrossRef Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L. and Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiology, 122, 127–136.CrossRef
Zurück zum Zitat Miao, X. and Wu, Q. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.CrossRef Miao, X. and Wu, Q. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.CrossRef
Zurück zum Zitat Mihranyan, A., Nyström, G., Razaq, A., Nyholm, L. and Strømme, M. (2010). A battery from algae cellulose. PULPAPER 2010 Conference - Implementing the New Rise: Winning Change. pp. 135–142. Mihranyan, A., Nyström, G., Razaq, A., Nyholm, L. and Strømme, M. (2010). A battery from algae cellulose. PULPAPER 2010 Conference - Implementing the New Rise: Winning Change. pp. 135–142.
Zurück zum Zitat Mitra, A.K. (1951). The algal flora of certain Indian soils. Indian Journal of Agricultural Sciences, 21, 375. Mitra, A.K. (1951). The algal flora of certain Indian soils. Indian Journal of Agricultural Sciences, 21, 375.
Zurück zum Zitat Molina Grima, E., Fernandez, F. and Camacho, F. (1999). Photobioreactors: Light regime, mass transfer and scale up. Journal of Biotechnology, 70, 231–247.CrossRef Molina Grima, E., Fernandez, F. and Camacho, F. (1999). Photobioreactors: Light regime, mass transfer and scale up. Journal of Biotechnology, 70, 231–247.CrossRef
Zurück zum Zitat Munda, I. M. (1977). Differences in amino acid composition of estuarine and marine fucoids. Aquatic Botany, 3, 273–280.CrossRef Munda, I. M. (1977). Differences in amino acid composition of estuarine and marine fucoids. Aquatic Botany, 3, 273–280.CrossRef
Zurück zum Zitat Mussgnug, J.H., Klassen, V., Schlüter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51–56.CrossRef Mussgnug, J.H., Klassen, V., Schlüter, A. and Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51–56.CrossRef
Zurück zum Zitat Ohlrogge, J., Allen, D., Berguson, B., DellaPenna, D., Shachar-Hill, Y. and Stymne, S. (2009). Driving on biomass. Science, 324, 1019–1020.CrossRef Ohlrogge, J., Allen, D., Berguson, B., DellaPenna, D., Shachar-Hill, Y. and Stymne, S. (2009). Driving on biomass. Science, 324, 1019–1020.CrossRef
Zurück zum Zitat Okabe, K., Murata, K., Nakanishi, M., Ogi, T., Nurunnabi, M. and Liu, Y. (2009). Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 128, 171–176.CrossRef Okabe, K., Murata, K., Nakanishi, M., Ogi, T., Nurunnabi, M. and Liu, Y. (2009). Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 128, 171–176.CrossRef
Zurück zum Zitat Ono, E., & Cuello, J. L. (2006). Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosystems engineering, 95(4), 597–606.CrossRef Ono, E., & Cuello, J. L. (2006). Feasibility assessment of microalgal carbon dioxide sequestration technology with photobioreactor and solar collector. Biosystems engineering, 95(4), 597–606.CrossRef
Zurück zum Zitat Ozgener, O. and Hepbasil, A. (2007). A review on the energy and exergy analysis of solar assisted heat pump systems. Renewable and Sustainable Energy Reviews, 11, 482–496.CrossRef Ozgener, O. and Hepbasil, A. (2007). A review on the energy and exergy analysis of solar assisted heat pump systems. Renewable and Sustainable Energy Reviews, 11, 482–496.CrossRef
Zurück zum Zitat Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.CrossRef Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.CrossRef
Zurück zum Zitat Pienkos, P.T. and Darzins, A. (2009). The promise and challenges of micro-algal derived biofuels. Biofuels Bioproducts and Biorefineries, 3, 431–440.CrossRef Pienkos, P.T. and Darzins, A. (2009). The promise and challenges of micro-algal derived biofuels. Biofuels Bioproducts and Biorefineries, 3, 431–440.CrossRef
Zurück zum Zitat Poulíčková, A., Špačková, J., Kelly, M. G., Duchoslav, M., & Mann, D. G. (2008). Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists?. Hydrobiologia, 614(1), 373–386.CrossRef Poulíčková, A., Špačková, J., Kelly, M. G., Duchoslav, M., & Mann, D. G. (2008). Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists?. Hydrobiologia, 614(1), 373–386.CrossRef
Zurück zum Zitat Pulz, O. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.CrossRef Pulz, O. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65, 635–648.CrossRef
Zurück zum Zitat Ran, C.Q., Chen, Z.A., Zhang, W., Yu, X.J. and Jin, M.F. (2006). Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao, 28(suppl 2), 258–263. Ran, C.Q., Chen, Z.A., Zhang, W., Yu, X.J. and Jin, M.F. (2006). Characterization of photobiological hydrogen production by several marine green algae. Wuhan Ligong Daxue Xuebao, 28(suppl 2), 258–263.
Zurück zum Zitat Rao, K.K. and Hall, D.O. (1996). Hydrogen production by cyanobacteria: Potential, problems and prospects. Journal of Marine Biotechnology, 4, 10–15. Rao, K.K. and Hall, D.O. (1996). Hydrogen production by cyanobacteria: Potential, problems and prospects. Journal of Marine Biotechnology, 4, 10–15.
Zurück zum Zitat Reijnders, L. (2009). Microalgal and terrestrial transport biofuels to displace fossil fuels. Energies, 2(1), 48–56.CrossRef Reijnders, L. (2009). Microalgal and terrestrial transport biofuels to displace fossil fuels. Energies, 2(1), 48–56.CrossRef
Zurück zum Zitat Reijnders, L. and Huijbregts, M.A.J. (2009). Energy Balance: Cumulative fossil fuel demand and solar energy conversion efficiency of transport biofuels. In: Transport biofuels: A seed to wheel perspective. Springer, London. pp. 49–74. Reijnders, L. and Huijbregts, M.A.J. (2009). Energy Balance: Cumulative fossil fuel demand and solar energy conversion efficiency of transport biofuels. In: Transport biofuels: A seed to wheel perspective. Springer, London. pp. 49–74.
Zurück zum Zitat Rodolfi, L., Zitelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.CrossRef Rodolfi, L., Zitelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.CrossRef
Zurück zum Zitat Rodjaroen, S., Juntawong, N., Mahakhant, A., & Miyamoto, K. (2007). High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J (Nat Sci), 41, 570–5. Rodjaroen, S., Juntawong, N., Mahakhant, A., & Miyamoto, K. (2007). High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J (Nat Sci), 41, 570–5.
Zurück zum Zitat Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. (1993). Microbiological management of wetland rice fields. In: Soil Microbiological Ecology—Application in Agricultural and Microbiological Management (ed. B. Metting). Marcel Dekker, New York. pp. 417–455. Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. (1993). Microbiological management of wetland rice fields. In: Soil Microbiological Ecology—Application in Agricultural and Microbiological Management (ed. B. Metting). Marcel Dekker, New York. pp. 417–455.
Zurück zum Zitat Rosales-Mendoza, S., Paz-Maldonado, L.M.T. and Soria-Guerra, R.E. (2012). Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Reports, 31(3), 479–494.CrossRef Rosales-Mendoza, S., Paz-Maldonado, L.M.T. and Soria-Guerra, R.E. (2012). Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives. Plant Cell Reports, 31(3), 479–494.CrossRef
Zurück zum Zitat Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Biotechnology, 19, 430–436. Rosenberg, J.N., Oyler, G.A., Wilkinson, L. and Betenbaugh, M.J. (2008). A green light for engineered algae: Redirecting metabolism to fuel a biotechnology revolution. Biotechnology, 19, 430–436.
Zurück zum Zitat Rother, J.A. and Whitton, B.A. (1989). Nitrogenase activity of blue green algae on seasonally flooded soils in Bangladesh. Plant Soil, 113, 47–52.CrossRef Rother, J.A. and Whitton, B.A. (1989). Nitrogenase activity of blue green algae on seasonally flooded soils in Bangladesh. Plant Soil, 113, 47–52.CrossRef
Zurück zum Zitat Ruperez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry 79: 23–26.CrossRef Ruperez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry 79: 23–26.CrossRef
Zurück zum Zitat Santana, G. C. S., Martins, P. F., Da Silva, N. D. L., Batistella, C. B., Maciel Filho, R., & Maciel, M. W. (2010). Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design, 88(5), 626–632.CrossRef Santana, G. C. S., Martins, P. F., Da Silva, N. D. L., Batistella, C. B., Maciel Filho, R., & Maciel, M. W. (2010). Simulation and cost estimate for biodiesel production using castor oil. Chemical Engineering Research and Design, 88(5), 626–632.CrossRef
Zurück zum Zitat Schenk, P.M., Skye, R., Thomas-Hall, Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43. Schenk, P.M., Skye, R., Thomas-Hall, Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.
Zurück zum Zitat Schütz, K., Happe, T., Troshina, O., Lindblad, P., Leitão, E., Oliveira, P. and Tamagnini, P. (2004). Cyanobacterial H2-production—A comparative analysis. Planta, 218, 350–359.CrossRef Schütz, K., Happe, T., Troshina, O., Lindblad, P., Leitão, E., Oliveira, P. and Tamagnini, P. (2004). Cyanobacterial H2-production—A comparative analysis. Planta, 218, 350–359.CrossRef
Zurück zum Zitat Sharma, S., Hunt, R., Cao, J. and Zeller, M.A. (2011). Bioplastics from algae biomass (Conference Paper) Society of Plastics Engineers—Global Plastics Environmental Conference 2011. Sharma, S., Hunt, R., Cao, J. and Zeller, M.A. (2011). Bioplastics from algae biomass (Conference Paper) Society of Plastics Engineers—Global Plastics Environmental Conference 2011.
Zurück zum Zitat Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998). A Look Back at the U.S. Department of Energy’s Aquatic Species Program–Biodiesel from Algae. Edited by: DOE: National Renewable Energy Laboratory. Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998). A Look Back at the U.S. Department of Energy’s Aquatic Species Program–Biodiesel from Algae. Edited by: DOE: National Renewable Energy Laboratory.
Zurück zum Zitat Sheng, G., Schluchter, W. M., & Bryant, D. A. (2008). Biogenesis of Phycobiliproteins I. cpcS-I AND cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. Journal of Biological Chemistry, 283(12), 7503–7512.CrossRef Sheng, G., Schluchter, W. M., & Bryant, D. A. (2008). Biogenesis of Phycobiliproteins I. cpcS-I AND cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002 define a heterodimeric phyococyanobilin lyase specific for β-phycocyanin and allophycocyanin subunits. Journal of Biological Chemistry, 283(12), 7503–7512.CrossRef
Zurück zum Zitat Sialve, B., Bernet, N. and Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416.CrossRef Sialve, B., Bernet, N. and Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27, 409–416.CrossRef
Zurück zum Zitat Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology, 102, 10–16.CrossRef Singh, A., Nigam, P.S. and Murphy, J.D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology, 102, 10–16.CrossRef
Zurück zum Zitat Skjånes, K., Rebours, C. and Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol., 33(2), 172–215.CrossRef Skjånes, K., Rebours, C. and Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol., 33(2), 172–215.CrossRef
Zurück zum Zitat Sode, K.J., Horikoshi, K., Takeyama, J., Nakamura, N. and Matsunga, T. (1991). On line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. J Biotechnol., 21, 209–218.CrossRef Sode, K.J., Horikoshi, K., Takeyama, J., Nakamura, N. and Matsunga, T. (1991). On line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. J Biotechnol., 21, 209–218.CrossRef
Zurück zum Zitat Soltani, S., Saadatmand, S., Khavarinejad, R. and Nejadsattari, T. (2011). Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz. in Caspian Sea Coast, Iran. Afri J Biotechnol., 10(39), 7684–7689. Soltani, S., Saadatmand, S., Khavarinejad, R. and Nejadsattari, T. (2011). Antioxidant and antibacterial activities of Cladophora glomerata (L.) Kütz. in Caspian Sea Coast, Iran. Afri J Biotechnol., 10(39), 7684–7689.
Zurück zum Zitat Spolaore, P., Cassan, C.J., Duran, E. and Isambert, A. (2006). Commercial Applications of Microalgae. J Bioscience and Bioeng, 101, 87–96.CrossRef Spolaore, P., Cassan, C.J., Duran, E. and Isambert, A. (2006). Commercial Applications of Microalgae. J Bioscience and Bioeng, 101, 87–96.CrossRef
Zurück zum Zitat Srinivasan, S. (1978). Algae multiplication fertilizer practices. International Rice Research Newsletter, 1 l(4), 35–36. Srinivasan, S. (1978). Algae multiplication fertilizer practices. International Rice Research Newsletter, 1 l(4), 35–36.
Zurück zum Zitat Subhadra, B. and Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38, 4897–4902.CrossRef Subhadra, B. and Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38, 4897–4902.CrossRef
Zurück zum Zitat Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. and Heidorn, T. (2007). Cyanobacterial hydrogenases. Diversity, Regulation and Applications. FEMS Microbiology Reviews, 31, 692–720.CrossRef Tamagnini, P., Leitão, E., Oliveira, P., Ferreira, D., Pinto, F., Harris, D. and Heidorn, T. (2007). Cyanobacterial hydrogenases. Diversity, Regulation and Applications. FEMS Microbiology Reviews, 31, 692–720.CrossRef
Zurück zum Zitat Taylor, G. (2008). Biofuels and the biorefinery concept. Energy policy, 36(12), 4406–4409.CrossRef Taylor, G. (2008). Biofuels and the biorefinery concept. Energy policy, 36(12), 4406–4409.CrossRef
Zurück zum Zitat Telford, W.G., Moss, M.W., Moreseman, J.P. and Thomas Allnutt, F.C. (2001). Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Meth., 254, 13–30.CrossRef Telford, W.G., Moss, M.W., Moreseman, J.P. and Thomas Allnutt, F.C. (2001). Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Meth., 254, 13–30.CrossRef
Zurück zum Zitat Tirol, A.C., Roger, P.A. and Watanabe, I. (1982). Fate of nitrogen from blue green alga in a flooded rice soil. Soil Science and Plant Nutrition, 28, 559–569.CrossRef Tirol, A.C., Roger, P.A. and Watanabe, I. (1982). Fate of nitrogen from blue green alga in a flooded rice soil. Soil Science and Plant Nutrition, 28, 559–569.CrossRef
Zurück zum Zitat Tokusoglu, O., & Unal, M.K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Sciences 68, 1144–1148.CrossRef Tokusoglu, O., & Unal, M.K. (2003). Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Sciences 68, 1144–1148.CrossRef
Zurück zum Zitat Törnwall, M. E., Virtamo, J., Korhonen, P. A., Virtanen, M. J., Taylor, P. R., Albanes, D., & Huttunen, J. K. (2004). Effect of α-tocopherol and β-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. European heart journal, 25(13), 1171–1178.CrossRef Törnwall, M. E., Virtamo, J., Korhonen, P. A., Virtanen, M. J., Taylor, P. R., Albanes, D., & Huttunen, J. K. (2004). Effect of α-tocopherol and β-carotene supplementation on coronary heart disease during the 6-year post-trial follow-up in the ATBC study. European heart journal, 25(13), 1171–1178.CrossRef
Zurück zum Zitat Tran, M. et al. (2009). Synthesis and Assembly of a Full-Length Human Monoclonal Antibody in Algal Chloroplasts. Biotechnol Bioeng., 104, 663–673. Tran, M. et al. (2009). Synthesis and Assembly of a Full-Length Human Monoclonal Antibody in Algal Chloroplasts. Biotechnol Bioeng., 104, 663–673.
Zurück zum Zitat Ueda, R., Hirayama, S., Sugata, K. and Nakayama, H. (1996). Process for the production of ethanol from microalgae. US Patent 5,578,472. Ueda, R., Hirayama, S., Sugata, K. and Nakayama, H. (1996). Process for the production of ethanol from microalgae. US Patent 5,578,472.
Zurück zum Zitat Usov, A.I. (2011). Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry, 65, 115–217.CrossRef Usov, A.I. (2011). Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry, 65, 115–217.CrossRef
Zurück zum Zitat Varfolomeev, S. D., Efremenko, E. N., & Krylova, L. P. (2010). Biofuels. Russian Chemical Reviews, 79(6), 491. Varfolomeev, S. D., Efremenko, E. N., & Krylova, L. P. (2010). Biofuels. Russian Chemical Reviews, 79(6), 491.
Zurück zum Zitat van Beilen, J.B. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioproducts Biorefineries, 4, 41–52.CrossRef van Beilen, J.B. (2010). Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioproducts Biorefineries, 4, 41–52.CrossRef
Zurück zum Zitat van Harmelen, T. and Oonk, H. (2006). Microalgae biofixation processes: Applications and potential contributions to greenhouse gas mitigation options. TNO Built Environmental Geosciences, Apeldoorn. van Harmelen, T. and Oonk, H. (2006). Microalgae biofixation processes: Applications and potential contributions to greenhouse gas mitigation options. TNO Built Environmental Geosciences, Apeldoorn.
Zurück zum Zitat van Haveren, J., Scott, E. L., & Sanders, J. (2008). Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2(1), 41–57.CrossRef van Haveren, J., Scott, E. L., & Sanders, J. (2008). Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining, 2(1), 41–57.CrossRef
Zurück zum Zitat Venkataraman, G.S. (1979). Algal inoculation in rice fields. In: Nitrogen and rice. International Rice Research Institute, Los Banos, Philippines. Pp 312–321. Venkataraman, G.S. (1979). Algal inoculation in rice fields. In: Nitrogen and rice. International Rice Research Institute, Los Banos, Philippines. Pp 312–321.
Zurück zum Zitat Villar, R., Laguna, M. R., Calleja, J. M., & Cadavid, I. (1992). Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta medica, 58(5), 405–409.CrossRef Villar, R., Laguna, M. R., Calleja, J. M., & Cadavid, I. (1992). Effects of Phaeodactylum tricornutum and Dunaliella tertiolecta extracts on the central nervous system. Planta medica, 58(5), 405–409.CrossRef
Zurück zum Zitat Watanabe, A., & Yamamoto, Y. (1971). Algal nitrogen fixation in the tropics. Plant and Soil, 35(1), 403–413. Watanabe, A., & Yamamoto, Y. (1971). Algal nitrogen fixation in the tropics. Plant and Soil, 35(1), 403–413.
Zurück zum Zitat Wang, B., Li, Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718. Wang, B., Li, Wu, N. and Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.
Zurück zum Zitat WI (Worldwatch Institute) (2007). Biofuels for Transport: Global Potential and Implications for Energy and Agriculture. Earthscan, London. WI (Worldwatch Institute) (2007). Biofuels for Transport: Global Potential and Implications for Energy and Agriculture. Earthscan, London.
Zurück zum Zitat Wiencke, C. and Bischof, K. (eds) (2012). Seaweed Biology. Novel insights into ecophysiology, ecology and utilization. Ecological Studies Vol 219, Springer Publishers. Wiencke, C. and Bischof, K. (eds) (2012). Seaweed Biology. Novel insights into ecophysiology, ecology and utilization. Ecological Studies Vol 219, Springer Publishers.
Zurück zum Zitat Willems, P. A. (2009). The biofuels landscape through the lens of industrial chemistry. Science, 325(5941), 707–708CrossRef Willems, P. A. (2009). The biofuels landscape through the lens of industrial chemistry. Science, 325(5941), 707–708CrossRef
Zurück zum Zitat Yamaguchi, K., 1997. Recent advances in microalgal bio-science in Japan, with special reference to utilization of biomass and metabolites: a review. J. appl. Phycol. 8: 487–502.CrossRef Yamaguchi, K., 1997. Recent advances in microalgal bio-science in Japan, with special reference to utilization of biomass and metabolites: a review. J. appl. Phycol. 8: 487–502.CrossRef
Zurück zum Zitat Yang, Z., Guo, R., Xu, X., Fan, Xa. and Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.CrossRef Yang, Z., Guo, R., Xu, X., Fan, Xa. and Li, X. (2010). Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy, 35, 9618–9623.CrossRef
Zurück zum Zitat Yu, W. L., Ansari, W., Schoepp, N. G., Hannon, M. J., Mayfield, S. P., & Burkart, M. D. (2011). Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact, 10(11). Yu, W. L., Ansari, W., Schoepp, N. G., Hannon, M. J., Mayfield, S. P., & Burkart, M. D. (2011). Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact, 10(11).
Zurück zum Zitat Zittelli G C, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312.CrossRef Zittelli G C, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312.CrossRef
Metadaten
Titel
Introduction
verfasst von
Debabrata Das
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-22813-6_1