Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Introduction

verfasst von : Xiao-Sheng Zhang

Erschienen in: Micro/Nano Integrated Fabrication Technology and Its Applications in Microenergy Harvesting

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter mainly reviews the development road map of micro-/nanointegrated fabrication technology as well as the previous research work of micro-/nanohierarchical structures. Consequently, the motivation, purpose, and innovative contributions of this thesis are briefly summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993) R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993)
2.
Zurück zum Zitat V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008) V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008)
3.
Zurück zum Zitat H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013) H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013)
4.
Zurück zum Zitat R. Blossey, Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301–306 (2003) R. Blossey, Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301–306 (2003)
5.
Zurück zum Zitat H. Cho, J. Kim, H. Park, J.W. Bang, M.S. Hyun, Y. Bae, L. Ha, D.Y. Kim, S.M. Kang, T.J. Park, S. Seo, M. Choi, K.Y. Suh, Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nat. Commun. 5, 3137 (2014) H. Cho, J. Kim, H. Park, J.W. Bang, M.S. Hyun, Y. Bae, L. Ha, D.Y. Kim, S.M. Kang, T.J. Park, S. Seo, M. Choi, K.Y. Suh, Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nat. Commun. 5, 3137 (2014)
6.
Zurück zum Zitat F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008) F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)
7.
Zurück zum Zitat W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11 %-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 3658–3663 (2013) W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11 %-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 3658–3663 (2013)
8.
Zurück zum Zitat G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining sharkskin and lotus effects. Soft Matter. 8, 11271–11284 (2012) G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining sharkskin and lotus effects. Soft Matter. 8, 11271–11284 (2012)
9.
Zurück zum Zitat Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011) Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011)
10.
Zurück zum Zitat W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997) W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)
11.
Zurück zum Zitat Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 172, 1103–1112 (2007) Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 172, 1103–1112 (2007)
12.
Zurück zum Zitat B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. Roy. Soc. A. 367, 1631–1672 (2009) B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. Roy. Soc. A. 367, 1631–1672 (2009)
13.
Zurück zum Zitat Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012) Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012)
14.
Zurück zum Zitat B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011) B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)
15.
Zurück zum Zitat D. Byun, J. Hong, Saputra, J.H. Ko, Y.J. Lee, H.C. Park, B.K. Byun, J.R. Lukes, Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70 (2009) D. Byun, J. Hong, Saputra, J.H. Ko, Y.J. Lee, H.C. Park, B.K. Byun, J.R. Lukes, Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70 (2009)
16.
Zurück zum Zitat S.M. Lee, J. Üpping, A. Bielawny, and M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011) S.M. Lee, J. Üpping, A. Bielawny, and M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011)
17.
Zurück zum Zitat K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002) K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002)
18.
Zurück zum Zitat Y. Takezawa, H. Imai, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small 2, 390–393 (2006) Y. Takezawa, H. Imai, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small 2, 390–393 (2006)
19.
Zurück zum Zitat H. Yang, X. Dou, Y. Fang, P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays. J. Colloid Interface Sci. 405, 51–57 (2013) H. Yang, X. Dou, Y. Fang, P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays. J. Colloid Interface Sci. 405, 51–57 (2013)
20.
Zurück zum Zitat J. Liu, J. Zou, L. Zhai, Bottom-up assembly of poly(3-hexylthiophene)on carbon nanotubes: 2D building blocks fornanoscale circuits. Macromol. Rapid Commun. 30, 1387–1391 (2009) J. Liu, J. Zou, L. Zhai, Bottom-up assembly of poly(3-hexylthiophene)on carbon nanotubes: 2D building blocks fornanoscale circuits. Macromol. Rapid Commun. 30, 1387–1391 (2009)
21.
Zurück zum Zitat J.S. Na, B. Gong, G. Scarel, G.N. Parsons, Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3, 3191–3199 (2009) J.S. Na, B. Gong, G. Scarel, G.N. Parsons, Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3, 3191–3199 (2009)
22.
Zurück zum Zitat Q. Dong, H. Su, W. Cao, D. Zhang, Q. Guo, Y. Lai, Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J. Solid State Chem. 180, 949–955 (2007) Q. Dong, H. Su, W. Cao, D. Zhang, Q. Guo, Y. Lai, Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J. Solid State Chem. 180, 949–955 (2007)
23.
Zurück zum Zitat J. Xiong, S.N. Das, B. Shin, J.P. Kar, J.H. Choi, J.M. Myoung, Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J. Colloid Interface Sci. 350, 344–347 (2010) J. Xiong, S.N. Das, B. Shin, J.P. Kar, J.H. Choi, J.M. Myoung, Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J. Colloid Interface Sci. 350, 344–347 (2010)
24.
Zurück zum Zitat Y. Tian, C.F. Guo, Y. Guo, Q. Wang, Q. Liu, BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 258, 1949–1954 (2012) Y. Tian, C.F. Guo, Y. Guo, Q. Wang, Q. Liu, BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 258, 1949–1954 (2012)
25.
Zurück zum Zitat Y. Rahmawan, K.R. Lee, M.W. Moon, K.Y. Suh, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surface, in 6th IEEE Nanotechnology Materials and Devices Conference, pp. 416–419, Jeju, Korea, 18–21 Oct 2011 Y. Rahmawan, K.R. Lee, M.W. Moon, K.Y. Suh, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surface, in 6th IEEE Nanotechnology Materials and Devices Conference, pp. 416–419, Jeju, Korea, 18–21 Oct 2011
26.
Zurück zum Zitat G. Lu, L. Li, S. Li, Y. Qu, H. Tang, X. Yang, Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 25, 3763–3768 (2009) G. Lu, L. Li, S. Li, Y. Qu, H. Tang, X. Yang, Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 25, 3763–3768 (2009)
27.
Zurück zum Zitat S. Tian, L. Li, W. Sun, X. Xia, D. Han, J. Li, C. Gu, Robust adhesion of flower-like few-layer graphene nanoclusters. Sci. Rep. 2, 551 (2012) S. Tian, L. Li, W. Sun, X. Xia, D. Han, J. Li, C. Gu, Robust adhesion of flower-like few-layer graphene nanoclusters. Sci. Rep. 2, 551 (2012)
28.
Zurück zum Zitat K. Ijichi, A. Fukuoka, A. Shimojima, M. Sugiyama, T. Okubo, A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Mater. Lett. 65, 828–831 (2011) K. Ijichi, A. Fukuoka, A. Shimojima, M. Sugiyama, T. Okubo, A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Mater. Lett. 65, 828–831 (2011)
29.
Zurück zum Zitat Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 7, 3388–3393 (2007) Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 7, 3388–3393 (2007)
30.
Zurück zum Zitat F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett. 99, 103501 (2011) F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett. 99, 103501 (2011)
31.
Zurück zum Zitat X. Li, B.K.T ay, P. Miele, A. Brioude, D. Cornu, Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Appl. Surf. Sci. 255, 7147–7152 (2009) X. Li, B.K.T ay, P. Miele, A. Brioude, D. Cornu, Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Appl. Surf. Sci. 255, 7147–7152 (2009)
32.
Zurück zum Zitat J.P. Lee, S. Choi, S. Park, Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir. 27, 809–814 (2011) J.P. Lee, S. Choi, S. Park, Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir. 27, 809–814 (2011)
33.
Zurück zum Zitat Y. He, C. Jiang, H. Yin, J. Chen, W. Yuan, Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 364, 219–229 (2011) Y. He, C. Jiang, H. Yin, J. Chen, W. Yuan, Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 364, 219–229 (2011)
34.
Zurück zum Zitat W. Wang, D. Li, M. Tian, Y.C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649–8655 (2012) W. Wang, D. Li, M. Tian, Y.C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649–8655 (2012)
35.
Zurück zum Zitat J. Liu, B. Liu, S. Liu, Z. Shen, C. Li, Y. Xia, A simple method to produce dual-scale silicon surfaces for solar cells. Surf. Coat. Technol. 229, 165–167 (2013) J. Liu, B. Liu, S. Liu, Z. Shen, C. Li, Y. Xia, A simple method to produce dual-scale silicon surfaces for solar cells. Surf. Coat. Technol. 229, 165–167 (2013)
36.
Zurück zum Zitat Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir 25, 6129–6136 (2009) Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir 25, 6129–6136 (2009)
37.
Zurück zum Zitat D. Zhang, F. Chen, G. Fang, Q. Yang, D. Xie, G. Qiao, W. Li, J. Si, X. Hou, Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng. 20, 075029 (2010) D. Zhang, F. Chen, G. Fang, Q. Yang, D. Xie, G. Qiao, W. Li, J. Si, X. Hou, Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng. 20, 075029 (2010)
38.
Zurück zum Zitat J. Yoo, G. Yu, J. Yi, Large-areamulticrystallinesiliconsolarcellfabricationusingreactiveion etching(RIE). Solar Energy Mater. Solar Cells 95, 2–6 (2011) J. Yoo, G. Yu, J. Yi, Large-areamulticrystallinesiliconsolarcellfabricationusingreactiveion etching(RIE). Solar Energy Mater. Solar Cells 95, 2–6 (2011)
39.
Zurück zum Zitat B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24, 2712–2718 (2008) B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24, 2712–2718 (2008)
40.
Zurück zum Zitat Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity. Microelectron. Eng. 88, 849–854 (2011) Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity. Microelectron. Eng. 88, 849–854 (2011)
41.
Zurück zum Zitat D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectron. Eng. 86, 1375–1378 (2009) D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectron. Eng. 86, 1375–1378 (2009)
42.
Zurück zum Zitat Y. Yoon, D.W. Lee, J.H. Ahn, J. Sohn, J.B. Lee, One-step fabrication of optically transparent polydimethylsiloxane artificial lotus leaf film using under-exposed under-baked photoresist mold, in 25th IEEE International Conference on Micro Electro Mechanical Systems, pp. 301–304, Paris, France, 29 Jan–2 Feb 2012 Y. Yoon, D.W. Lee, J.H. Ahn, J. Sohn, J.B. Lee, One-step fabrication of optically transparent polydimethylsiloxane artificial lotus leaf film using under-exposed under-baked photoresist mold, in 25th IEEE International Conference on Micro Electro Mechanical Systems, pp. 301–304, Paris, France, 29 Jan–2 Feb 2012
43.
Zurück zum Zitat Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013) Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013)
44.
Zurück zum Zitat Z.L. Wang, Nanogenerators for Self-powered Devices and Systems (Georgia Institute of Technology, Atlanta, 2011) Z.L. Wang, Nanogenerators for Self-powered Devices and Systems (Georgia Institute of Technology, Atlanta, 2011)
45.
Zurück zum Zitat Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006) Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)
46.
Zurück zum Zitat Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics-fundamentals and applications. Nat. Sci. Rev. 1, 62–90 (2014) Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics-fundamentals and applications. Nat. Sci. Rev. 1, 62–90 (2014)
47.
Zurück zum Zitat Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012) Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)
48.
Zurück zum Zitat X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)CrossRef
49.
Zurück zum Zitat S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)CrossRef
50.
Zurück zum Zitat R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRef R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)CrossRef
51.
Zurück zum Zitat Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)CrossRef Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)CrossRef
52.
Zurück zum Zitat Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)CrossRef Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)CrossRef
53.
Zurück zum Zitat C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)CrossRef
54.
Zurück zum Zitat C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)CrossRef C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)CrossRef
55.
Zurück zum Zitat F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)CrossRef
56.
Zurück zum Zitat G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)CrossRef G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)CrossRef
57.
Zurück zum Zitat F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRef F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)CrossRef
58.
Zurück zum Zitat S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012)CrossRef S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012)CrossRef
59.
Zurück zum Zitat A.F. Diaza, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)CrossRef A.F. Diaza, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)CrossRef
60.
Zurück zum Zitat P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z.L. Wang, Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361–6366 (2013)CrossRef P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z.L. Wang, Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361–6366 (2013)CrossRef
61.
Zurück zum Zitat L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)CrossRef L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)CrossRef
62.
Zurück zum Zitat Y. Yang, H. Zhang, Y. Liu, Z.H. Lin, S. Lee, Z. Lin, C.P. Wong, Z.L. Wang, Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)CrossRef Y. Yang, H. Zhang, Y. Liu, Z.H. Lin, S. Lee, Z. Lin, C.P. Wong, Z.L. Wang, Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)CrossRef
63.
Zurück zum Zitat Y. Yang, H. Zhang, J. Chen, S. Lee, T.C. Hou, Z.L. Wang, Simultaneously harvesting mechanical and chemicalenergies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749 (2013)CrossRef Y. Yang, H. Zhang, J. Chen, S. Lee, T.C. Hou, Z.L. Wang, Simultaneously harvesting mechanical and chemicalenergies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749 (2013)CrossRef
64.
Zurück zum Zitat S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)CrossRef S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)CrossRef
65.
Zurück zum Zitat G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014) G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)
Metadaten
Titel
Introduction
verfasst von
Xiao-Sheng Zhang
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48816-4_1

Neuer Inhalt