Skip to main content
Erschienen in: Journal of Materials Science 5/2018

06.11.2017 | Metals

Invar-type nanocrystalline compacts obtained by spark plasma sintering from mechanically alloyed powders

verfasst von: C. V. Prică, B. V. Neamţu, F. Popa, T. F. Marinca, N. Sechel, I. Chicinaş

Erschienen in: Journal of Materials Science | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Invar36 (Fe64Ni36) and Invar-Cu (Fe59Ni36Cu5) nanocrystalline compacts were successfully obtained by spark plasma sintering from mechanically alloyed powders. The coefficient of thermal expansion (CTE) was determined for both Invar36 and Invar-Cu compacts. For Invar36 powder, the lattice parameter value is constant up to 250 °C, while for the Invar-Cu powder, the value of lattice parameter changes for the temperatures that exceed 160 °C. Both Invar36 and Invar-Cu nanocrystalline compacts were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and dilatometry. The value of CTE is very low for both Invar36 compact (α = 0.6 × 10−6/°C) and Invar-Cu (α = 5.2 × 10−6/°C) up to Curie temperature (T C), in agreement with in situ (high-temperature X-ray diffraction—HT-XRD) analyses of Invar-type powders.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Srajer G, Yahnke CJ, Haeffner DR, Mills DM, Assoufid L, Harmon BN, Zuo Z (1999) Magnetic Compton scattering study of the Invar alloy Fe3Pt. J Phys Condens Matter 11:253–260CrossRef Srajer G, Yahnke CJ, Haeffner DR, Mills DM, Assoufid L, Harmon BN, Zuo Z (1999) Magnetic Compton scattering study of the Invar alloy Fe3Pt. J Phys Condens Matter 11:253–260CrossRef
4.
Zurück zum Zitat Kveglis LI, Noskov FM, Kazantseva VV, Abylkalykova RB, Rakhimova UA, Musikhin VA, Zaitsev NL, Menshikova TA (2008) Fe–Mn–C alloys with anomalous volume of crystal lattice. Bull Russ Acad Sci Phys 72:1169–1171CrossRef Kveglis LI, Noskov FM, Kazantseva VV, Abylkalykova RB, Rakhimova UA, Musikhin VA, Zaitsev NL, Menshikova TA (2008) Fe–Mn–C alloys with anomalous volume of crystal lattice. Bull Russ Acad Sci Phys 72:1169–1171CrossRef
5.
Zurück zum Zitat Nadutov VM, Kosintsev SG, Svystunov YO, Garamus VM, Willumeit R, Eckerlebe H, Ericsson T, Annersten H (2011) Anti-Invar properties and magnetic order in fcc Fe–Ni–C alloy. J Magn Magn Mater 323:2786–2791CrossRef Nadutov VM, Kosintsev SG, Svystunov YO, Garamus VM, Willumeit R, Eckerlebe H, Ericsson T, Annersten H (2011) Anti-Invar properties and magnetic order in fcc Fe–Ni–C alloy. J Magn Magn Mater 323:2786–2791CrossRef
6.
Zurück zum Zitat Acet M, Schneider T, Zähres H, Wassermann EF, Pepperhoff W (1994) Anti-Invar in Fe–Ni. J Appl Phys 75:7015–7017CrossRef Acet M, Schneider T, Zähres H, Wassermann EF, Pepperhoff W (1994) Anti-Invar in Fe–Ni. J Appl Phys 75:7015–7017CrossRef
7.
Zurück zum Zitat Mulyukov RR, Kazantsev VA, Mulyukov KY, Burkhanov AM, Safarov IM, Bitkulov IK (2006) Properties of Fe-36%Ni Invar with nanocrystalline structure. Rev. Adv. Mater. Sci. 11:116–121 Mulyukov RR, Kazantsev VA, Mulyukov KY, Burkhanov AM, Safarov IM, Bitkulov IK (2006) Properties of Fe-36%Ni Invar with nanocrystalline structure. Rev. Adv. Mater. Sci. 11:116–121
8.
Zurück zum Zitat Qiu C, Adkins NJE, Attallah MM (2016) Selective laser melting of Invar 36: microstructure and properties. Acta Mater 10:382–395CrossRef Qiu C, Adkins NJE, Attallah MM (2016) Selective laser melting of Invar 36: microstructure and properties. Acta Mater 10:382–395CrossRef
9.
Zurück zum Zitat Al-Dabbagh JB, Al-Faluji IK, Bin Hashim Y (2012) Thermal expansion in ferromagnetic Fe–Ni INVAR alloy. Int J Eng Sci 1:48–51 Al-Dabbagh JB, Al-Faluji IK, Bin Hashim Y (2012) Thermal expansion in ferromagnetic Fe–Ni INVAR alloy. Int J Eng Sci 1:48–51
10.
Zurück zum Zitat Tino Y (1971) Invar-problem and martensitic transformation. Journal de Physique Colloques 32:1121–1123 Tino Y (1971) Invar-problem and martensitic transformation. Journal de Physique Colloques 32:1121–1123
11.
Zurück zum Zitat Jiraskova Y, Bursik J, Turek I, Hapla M, Titov A, Zivotsky O (2014) Phase and magnetic studies of the high-energy alloyed Ni–Fe. J Alloy Compd 594:133–140CrossRef Jiraskova Y, Bursik J, Turek I, Hapla M, Titov A, Zivotsky O (2014) Phase and magnetic studies of the high-energy alloyed Ni–Fe. J Alloy Compd 594:133–140CrossRef
12.
Zurück zum Zitat Van Schilfgaarde M, Abrikosov IA, Johansson B (1999) Origin of the Invar effect in iron–nickel alloys. Nature 400:46–49CrossRef Van Schilfgaarde M, Abrikosov IA, Johansson B (1999) Origin of the Invar effect in iron–nickel alloys. Nature 400:46–49CrossRef
13.
Zurück zum Zitat Iwase A, Hamatani Y, Mukumoto Y, Ishikawa N, Chimi Y, Kambara T, Muller C, Neumann R, Ono F (2003) Anomalous shift of Curie temperature in iron–nickel Invar alloys by high-energy heavy ion irradiation. Nucl Instr Methods Phys Res B 209:323–328CrossRef Iwase A, Hamatani Y, Mukumoto Y, Ishikawa N, Chimi Y, Kambara T, Muller C, Neumann R, Ono F (2003) Anomalous shift of Curie temperature in iron–nickel Invar alloys by high-energy heavy ion irradiation. Nucl Instr Methods Phys Res B 209:323–328CrossRef
14.
Zurück zum Zitat Ustinovshikov Y, Shabanova I (2013) A study of microstructures responsible for the emergence of the invar and permalloy effects in Fe–Ni alloys. J Alloy Compd 578:292–296CrossRef Ustinovshikov Y, Shabanova I (2013) A study of microstructures responsible for the emergence of the invar and permalloy effects in Fe–Ni alloys. J Alloy Compd 578:292–296CrossRef
15.
Zurück zum Zitat Gorria P, Martínez-Blanco D, Pérez MJ, Blanco JA (2009) Stress-induced large Curie temperature enhancement in Fe64Ni36 Invar alloy. Phys Rev B 80:064421–064426CrossRef Gorria P, Martínez-Blanco D, Pérez MJ, Blanco JA (2009) Stress-induced large Curie temperature enhancement in Fe64Ni36 Invar alloy. Phys Rev B 80:064421–064426CrossRef
16.
Zurück zum Zitat Khan SA, Ziya AB, Ibrahim A, Atiq S, Usman M, Ahmad N, Shakeel M (2015) Enhancement of Curie temperature (Tc) and magnetization of Fe–Ni Invar alloy through Cu substitution and with He+2 ion irradiation. J Electron Mater 45:2258–2265CrossRef Khan SA, Ziya AB, Ibrahim A, Atiq S, Usman M, Ahmad N, Shakeel M (2015) Enhancement of Curie temperature (Tc) and magnetization of Fe–Ni Invar alloy through Cu substitution and with He+2 ion irradiation. J Electron Mater 45:2258–2265CrossRef
17.
Zurück zum Zitat Boudinar N, Djekoun A, Chebli A, Otmani A, Bouzabata B, Greneche JM (2010) X ray diffraction and Mossbauer spectrometry investigation of Invar nanoparticles produced by mechanical alloying. Int J Nanoelectron Mater 3:143–153 Boudinar N, Djekoun A, Chebli A, Otmani A, Bouzabata B, Greneche JM (2010) X ray diffraction and Mossbauer spectrometry investigation of Invar nanoparticles produced by mechanical alloying. Int J Nanoelectron Mater 3:143–153
18.
Zurück zum Zitat Rodriguez RR, Valenzuela JL, Tabares JA, Pérez Alcázar GA (2014) Mössbauer and X-ray study of the Fe65Ni35 invar alloy obtained by mechanical alloying. Hyperfine Interact 224:323–330CrossRef Rodriguez RR, Valenzuela JL, Tabares JA, Pérez Alcázar GA (2014) Mössbauer and X-ray study of the Fe65Ni35 invar alloy obtained by mechanical alloying. Hyperfine Interact 224:323–330CrossRef
19.
Zurück zum Zitat Gorria P, Martínez-Blanco D, Blanco JA, Smith RI (2010) Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy. J Alloy Compd 495:495–498CrossRef Gorria P, Martínez-Blanco D, Blanco JA, Smith RI (2010) Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy. J Alloy Compd 495:495–498CrossRef
20.
Zurück zum Zitat Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227CrossRef Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227CrossRef
21.
Zurück zum Zitat Holland TB, Ovid’ko IA, Wang H, Mukherjee AK (2010) Elevated temperature deformation behavior of spark plasma sintered nanometric nickel with varied grain size distributions. Mater Sci Eng A 528:663–671CrossRef Holland TB, Ovid’ko IA, Wang H, Mukherjee AK (2010) Elevated temperature deformation behavior of spark plasma sintered nanometric nickel with varied grain size distributions. Mater Sci Eng A 528:663–671CrossRef
22.
Zurück zum Zitat Kodash VY, Groza JR, Cho KC, Klotz BR, Dowding RJ (2004) Field-assisted sintering of Ni nanopowders. Mater Sci Eng A 385:367–371CrossRef Kodash VY, Groza JR, Cho KC, Klotz BR, Dowding RJ (2004) Field-assisted sintering of Ni nanopowders. Mater Sci Eng A 385:367–371CrossRef
23.
Zurück zum Zitat Prică CV, Marinca TF, Popa F, Sechel NA, Isnard O, Chicinaş I (2016) Synthesis of nanocrystalline Ni3Fe powder by mechanical alloying using an extreme friction mode. Adv Powder Technol 27:395–402CrossRef Prică CV, Marinca TF, Popa F, Sechel NA, Isnard O, Chicinaş I (2016) Synthesis of nanocrystalline Ni3Fe powder by mechanical alloying using an extreme friction mode. Adv Powder Technol 27:395–402CrossRef
25.
Zurück zum Zitat Ni JE, Case ED, Schmidt RD, Wu C-I, Hogan TP, Trejo RM, Kirkham MJ, Lara-Curzio E, Kanatzidis MG (2013) The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing dependent bloating. J Mater Sci 48(18):6233–6244. doi:https://doi.org/10.1007/s10853-013-7421-7 CrossRef Ni JE, Case ED, Schmidt RD, Wu C-I, Hogan TP, Trejo RM, Kirkham MJ, Lara-Curzio E, Kanatzidis MG (2013) The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing dependent bloating. J Mater Sci 48(18):6233–6244. doi:https://​doi.​org/​10.​1007/​s10853-013-7421-7 CrossRef
26.
Zurück zum Zitat Takashi Y, Hiromitsu I, Masaki Y, Tsuneaki G (2004) Effect of pressure on the magnetization of Fe–Ni and Fe–Ni–Cu alloys prepared by mechanical alloying. Nippon Kinzoku Gakkaishi 68:252–256 Takashi Y, Hiromitsu I, Masaki Y, Tsuneaki G (2004) Effect of pressure on the magnetization of Fe–Ni and Fe–Ni–Cu alloys prepared by mechanical alloying. Nippon Kinzoku Gakkaishi 68:252–256
Metadaten
Titel
Invar-type nanocrystalline compacts obtained by spark plasma sintering from mechanically alloyed powders
verfasst von
C. V. Prică
B. V. Neamţu
F. Popa
T. F. Marinca
N. Sechel
I. Chicinaş
Publikationsdatum
06.11.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1771-5

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Science 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.