Skip to main content

2020 | OriginalPaper | Buchkapitel

Invariance of the Essential Spectra of Operator Pencils

verfasst von : H. Gernandt, N. Moalla, F. Philipp, W. Selmi, C. Trunk

Erschienen in: Operator Theory, Operator Algebras and Their Interactions with Geometry and Topology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The essential spectrum of operator pencils with bounded coefficients in a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients of two pencils are derived which guarantee the same essential spectrum. This is done by exploiting a strong relation between an operator pencil and a specific linear subspace (linear relation).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat T. Azizov, J. Behrndt, P. Jonas, and C. Trunk, Compact and finite rank perturbations of closed linear operators and relations in Hilbert spaces, Integral Equations Oper. Theory 63 (2009), 151–163.MathSciNetCrossRef T. Azizov, J. Behrndt, P. Jonas, and C. Trunk, Compact and finite rank perturbations of closed linear operators and relations in Hilbert spaces, Integral Equations Oper. Theory 63 (2009), 151–163.MathSciNetCrossRef
3.
Zurück zum Zitat T. Álvarez and A. Sandovici, On the reduced minimum modulus of a linear relation in Hilbert spaces, Complex Anal. Oper. Theory 7 (2013), 801–812.MathSciNetCrossRef T. Álvarez and A. Sandovici, On the reduced minimum modulus of a linear relation in Hilbert spaces, Complex Anal. Oper. Theory 7 (2013), 801–812.MathSciNetCrossRef
4.
Zurück zum Zitat J. Conway, A Course in Functional Analysis, Springer, New York, 1985.CrossRef J. Conway, A Course in Functional Analysis, Springer, New York, 1985.CrossRef
5.
Zurück zum Zitat R. Cross, Multivalued Linear Operators, Marcel Dekker, New York, 1998.MATH R. Cross, Multivalued Linear Operators, Marcel Dekker, New York, 1998.MATH
6.
Zurück zum Zitat W. Evans, R. Lewis, and A. Zettl, Non-self-adjoint operators and their essential spectra, in: W. Everitt, R. Lewis (Eds.), Ordinary differential equations and operators, pages 123–160. Lect. Notes. Math. 1032, Springer, Berlin, 1983. W. Evans, R. Lewis, and A. Zettl, Non-self-adjoint operators and their essential spectra, in: W. Everitt, R. Lewis (Eds.), Ordinary differential equations and operators, pages 123–160. Lect. Notes. Math. 1032, Springer, Berlin, 1983.
7.
Zurück zum Zitat C.W. Groetsch, Generalized inverses of linear operators, Marcel Dekker, New York, 1977.MATH C.W. Groetsch, Generalized inverses of linear operators, Marcel Dekker, New York, 1977.MATH
8.
Zurück zum Zitat A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer, Cham 2015.CrossRef A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer, Cham 2015.CrossRef
9.
Zurück zum Zitat A. Jeribi, N. Moalla, and S. Yengui, S-essential spectra and application to an example of transport operators, Math. Methods Appl. Sci. 37 (2014) 2341–2353.MathSciNetCrossRef A. Jeribi, N. Moalla, and S. Yengui, S-essential spectra and application to an example of transport operators, Math. Methods Appl. Sci. 37 (2014) 2341–2353.MathSciNetCrossRef
10.
Zurück zum Zitat T. Kato, Perturbation theory for linear operators, Springer, New York, 1966.CrossRef T. Kato, Perturbation theory for linear operators, Springer, New York, 1966.CrossRef
11.
Zurück zum Zitat S. Kurepa, Genralized inverse of an operator with closed range, Glasnik Mat. 3 (1968), 207–214.MATH S. Kurepa, Genralized inverse of an operator with closed range, Glasnik Mat. 3 (1968), 207–214.MATH
12.
Zurück zum Zitat J.-P. Labrousse, A. Sandovici, H. de Snoo, and H. Winkler, Closed linear relations and their regular points, Operators and Matrices 6 (2012), 681–714.MathSciNetCrossRef J.-P. Labrousse, A. Sandovici, H. de Snoo, and H. Winkler, Closed linear relations and their regular points, Operators and Matrices 6 (2012), 681–714.MathSciNetCrossRef
13.
Zurück zum Zitat A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, RI, 1988.MATH A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, RI, 1988.MATH
14.
Zurück zum Zitat I. Nakić, On the correspondence between spectra of the operator pencil A − λB and the operator B −1 A, Glas. Mat. III. Ser. 51 (2016), 197–221.MathSciNetCrossRef I. Nakić, On the correspondence between spectra of the operator pencil A − λB and the operator B −1 A, Glas. Mat. III. Ser. 51 (2016), 197–221.MathSciNetCrossRef
15.
Zurück zum Zitat K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Springer, Berlin, 2012.CrossRef K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Springer, Berlin, 2012.CrossRef
Metadaten
Titel
Invariance of the Essential Spectra of Operator Pencils
verfasst von
H. Gernandt
N. Moalla
F. Philipp
W. Selmi
C. Trunk
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43380-2_10