Skip to main content

2015 | OriginalPaper | Buchkapitel

7. Invariants of an Apparent Contour

verfasst von : Giovanni Bellettini, Valentina Beorchia, Maurizio Paolini, Franco Pasquarelli

Erschienen in: Shape Reconstruction from Apparent Contours

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this chapter is to illustrate some interesting invariants of apparent contours and labelled apparent contours. These invariants can be numbers, groups, polynomials; invariance here means that the they are insensitive to certain transformations, that will be specified case by case.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
By invariant, the authors of [33] mean a locally constant function on the set of stable mappings; see Sect. 7.3. See also [23, 32] and the references therein. The invariants considered in [33] turn out to be also invariants under diffeomorphic equivalence Definition 2.​4.​2).
 
2
With kind permission from Elsevier, in this section and in Sects. 7.2 and 7.3 we illustrate the results and report some of the figures from the quoted paper [9].
 
3
\(\mathfrak{B}(\text{appcon}(\varphi ))\) is automatically computed in the appcontour program (Chap. 10).
 
4
Compare also with Sect. 2.​5.​3.
 
5
An informal way to realize that \(\mathfrak{B}(\text{appcon}(\varphi ))\) is independent of the Morse description is the following. Suppose we are given two Morse descriptions of \(\text{appcon}(\varphi )\). Possibly composing with two elements of \(\text{Diff}_{\mathrm{c}}(\mathbb{R}^{2})\), we can suppose that the Morse lines of both the two Morse descriptions are horizontal and straight. The original apparent contour \(\text{appcon}(\varphi )\) is changed, under the action of these two diffeomorphisms, into two new apparent contours, say \(G\) and G′. Let us construct by hand an \(\mathbb{R}^{2}\)-ambient isotopy taking G into G′. One then classifies the events that appear in the path of diffeomorphisms taking G into G′, which are the following: local maxima or minima can be created or destroyed, and one checks that in both cases, (7.3) is unchanged. In addition, the number of crossings does not change, since a diffeomorphism of \(\mathbb{R}^{2}\) can only locally “rotate” and translate a crossing. When performing a local rotation, local maxima and minima are introduced, and one checks directly the invariance using definition (7.3) and Definition 7.1.1. Also the number of cusps does not change; moreover, cusps have been previously transformed into transversal marked points: applying a local rotation to an arc containing a marked point, the invariance follows from the definition, since the weight is independent of the orientation of the arc.
 
6
That is, the tangent line to \(\text{appcon}(\varphi )\) times \(\mathbb{R}\).
 
7
According to the vector product of the tangent vector to the path above and the tangent vector to the path below.
 
8
As we have already said in the Introduction, \(\mathit{BL}(\text{appcon}(\varphi ))\) is called a Bennequin-type invariant; see, e.g., [36]. In [33] it is proved that all local first order Vassiliev-type invariants of \(\text{appcon}(\varphi )\) are a combination of the number of cusps of \(\text{appcon}(\varphi )\), the number of crossings of \(\text{appcon}(\varphi )\), and of \(\mathit{BL}(\text{appcon}(\varphi ))\).
 
9
Or also the bifurcation set of \(\mathcal{C}^{\infty }(M, \mathbb{R}^{2})\) (see [42, 43] and [30]). Recall that, if a map \(\varphi\) belongs to \(\text{Unstable}(M, \mathbb{R}^{2})\), then every neighbourhood of \(\varphi\) contains maps not equivalent to \(\varphi\). We refer to the survey article [13] for more information.
 
10
Not surprisingly, such a classification is similar to the one in Chap. 6; this becomes reasonable, if one interprets \(\varphi\) as the first two coordinates of a local embedding of M in \(\mathbb{R}^{3}\). Notice carefully that M is, in this chapter, an abstract two-manifold, therefore there is no labelling on \(\text{appcon}(\varphi )\). In contrast, in Chap. 6 only labelled apparent contours are taken into account, and for this reason the number of possible cases is much larger.
 
11
See, e.g., [24, 6, 7] and [22].
 
12
Indeed, it suffices to check that both functions are zero far from \(\text{appcon}(\varphi )\) and that both have the same jumps when crossing \(\text{appcon}(\varphi )\).
 
13
See also [17, Definition (1.19), p. 107] for related subjects.
 
14
Therefore, the resulting construction is not only invariant under diffeomorphic equivalence of apparent contours Definition 2.​4.​2), but also under \(\mathbb{R}^{3}\)-ambient isotopies.
 
15
See, e.g., [26], [35, Thm. 1] and [27].
 
16
By a vertex (respectively an edge) of \(\mathcal{P}\) we mean the homeomorphic image of a vertex (respectively an edge) of a closed planar polygon.
 
17
Recall that the Euler–Poincaré characteristic of a \(\mathit{CW}\) complex is \(\sum _{\text{d}}(-1)^{\text{d}}\#\{\text{d}-\text{dimensional cell}\}\); see, for instance, [40, p. 429], [11].
 
18
This graph contains the singular curve (see Remark 3.​2.​4). The corresponding partition has been considered, in more generality, for instance in [46].
 
19
Suppose that \(\mathcal{M}\) is a compact oriented connected three-manifold with boundary, and consider the double \(D(\mathcal{M})\) of \(\mathcal{M}\), obtained by identifying \(\partial \mathcal{M}\) with the boundary of a copy \(-\mathcal{M}\) of \(\mathcal{M}\), with opposite orientation. Then [37, p. 261] \(\chi (D(\mathcal{M})) = 0\). On the other hand, it is possible to show that \(\chi (D(\mathcal{M})) = 2\chi (\mathcal{M}) -\chi (\partial \mathcal{M})\).
 
20
Under \(\mathbb{R}^{3}\)-ambient isotopies with compact support.
 
21
Beware however that \(\mathbb{R}^{3}\setminus E\) and \(\mathbb{S}^{3}\setminus E\) are not, in general, homotopically equivalent; for example, the complement of a solid sphere in \(\mathbb{S}^{3}\) is contractible, whereas the complement in \(\mathbb{R}^{3}\) is not.
 
22
The Euler–Poincaré characteristic and the genus are related by \(\chi (\Sigma ) = 2 - 2g\).
 
23
The reason being that \(\Sigma \) separates \(E\) (the interior) from \(\mathbb{R}^{3}\setminus E\) (the exterior): the interior is below the ceiling, and consequently it cannot be above it at the same time.
 
24
There are exceptions, most notably the unknotting theorem [38, p. 103] asserts that “trivial” fundamental groups for \(\Sigma \) with the topology of a torus imply that the scene is ambient isotopic to the standard solid torus.
 
25
Proving that the trefoil knot cannot be deformed into its specular version, although apparently obvious, requires quite sophisticated techniques, beyond the scope of this book.
 
26
This is the most interesting choice in the case E is a knotted solid torus (tubular neighbourhood of a knot), or a union of knotted solid tori, tubular neighbourhood of a link. Indeed in this case the fundamental group of \(\mathbb{R}^{3}\setminus E\) is simply called the knot group (respectively link group), whereas the fundamental group of E simply reduces to \(\mathbb{Z}\), the infinite cyclic group, for each connected component. Of course in our broader context we can imagine situations, such as the sphere with a knotted tunnel of Fig. 10.20, where the interesting solid set is \(E\) itself.
 
27
Strictly speaking, \(x_{1},\ldots,x_{n}\) are free generators of the free group F of rank n; \(r_{1},\ldots,r_{m}\) are elements of F and G is the quotient G = FH where H is the smallest normal subgroup of F containing \(r_{1},\ldots,r_{m}\).
 
28
Although as a matter of fact the isomorphism problem is decidable if restricted to special classes of finitely presented groups. Among these, interestingly, we also find the fundamental groups of three-manifolds. A quite interesting post on this subject by Henry Wilton can be found at the web address http://​ldtopology.​wordpress.​com/​2010/​01/​26/​3-manifold-groups-are-known-right/​ (May 21,2014).
 
29
The related word problem (respectively conjugacy problem) of deciding whether two words define the same element (respectively conjugate elements) in a finitely presented group is also undecidable in general.
 
30
The rank r is actually equal to the Betti number b 1 of the component C that we are considering. The other nonzero Betti numbers are b 0, which is equal to 1, since we are restricting to a single connected component of \(\mathbb{R}^{3}\setminus E\), and b 2: the number of “voids” (cavities) in C, equal to the number of connected components of the complement of C (which is also the number of connected components of \(\Sigma \) adjacent to C) decreased by one. The Euler–Poincaré characteristic of C is given by \(b_{0} - b_{1} + b_{2}\).
 
31
It can be defined for any matrix with entries in a principal ideal domain.
 
32
In [20] the emphasis is given to the ideal of L generated by the Alexander polynomial, indicated by \(\varepsilon _{1}\), see Sect. 7.7.
 
33
The mapping \(t \rightarrow 1/t\) corresponds to the automorphism of the ring \(\mathbb{Z}\) mapping the (multiplicative) generator t onto its inverse. This is the unique nontrivial automorphism of \(\mathbb{Z}\). Interestingly, it turns out that the Alexander polynomial of a knot is invariant under such a transformation, up to multiplication by a power of t; this is not the case for a generic finitely presented group with infinite cyclic commutator quotient. The symmetry of the coefficients of the Alexander polynomial is a nontrivial fact, consequence of the Poincaré Duality isomorphism. It is known that any Laurent polynomial having symmetric coefficients and that evaluates to ± 1 for t = 1 is the Alexander polynomial of some knot [25].
 
34
Recall that \(\mathbb{Z}X\) and \(\mathbb{Z}G\) are noncommutative rings.
 
35
This is always the case for G the first fundamental group of sets of the form \(\Sigma = \partial E\), E or \(\mathbb{R}^{3}\setminus E\). This follows using the Mayer–Vietoris exact sequence [24] on the two solid sets E, \(\mathbb{R}^{3}\setminus E\), and their common boundary \(\Sigma \). Indeed, let ρ > 0 and consider the open sets \(E_{\rho }^{+}:=\{ x \in \mathbb{R}^{3}: \text{dist}(x,E) <\rho \}\) and \(E_{\rho }^{-}:=\{ x \in \mathbb{R}^{3}: \text{dist}(x, \mathbb{R}^{3}\setminus E) >\rho \}\), so that \(\mathbb{R}^{3} = E_{\rho }^{+} \cup (\mathbb{R}^{3}\setminus E_{\rho }^{-})\). We have the short exact sequence \(0 = H_{2}(\mathbb{R}^{3}) \rightarrow H_{1}(E_{\rho }^{+} \cap (\mathbb{R}^{3}\setminus E_{\rho }^{-})) \rightarrow H_{1}(E_{\rho }^{+}) \oplus H_{1}(\mathbb{R}^{3}\setminus E_{\rho }^{-}) \rightarrow H_{1}(\mathbb{R}^{3}) = 0\). Hence \(H_{1}(E_{\rho }^{+} \cap (\mathbb{R}^{3}\setminus E_{\rho }^{-}))\) and \(H_{1}(E_{\rho }^{+}) \oplus H_{1}(\mathbb{R}^{3}\setminus E_{\rho }^{-})\) are isomorphic. Since H 1(∂ E) is (for \(\rho > 0\) sufficiently small) isomorphic to \(H_{1}(E_{\rho }^{+} \cap (\mathbb{R}^{3}\setminus E_{\rho }^{-}))\) which is a direct product of copies of \(\mathbb{Z}\), it follows that also \(H_{1}(E_{\rho }^{+})\) and \(H_{1}(\mathbb{R}^{3}\setminus E_{\rho }^{-})\) are direct products of copies of \(\mathbb{Z}\), and the assertion follows.
 
36
Strictly speaking, the isomorphism between the corresponding group rings induced by the isomorphism between GG′ and \(\mathbb{Z}^{2}\).
 
37
Note that when the presentation is directly obtained from a knot/link diagram using the Wirtinger technique [38], then the relation of the generators with their projection is easily obtained: all generators associated with the same link component project to the same element, whereas generators associated with different link component (one per component) project onto a base of the quotient group.
 
38
More generally this is the case for the inside and the outside of \(\Sigma \) made of two connected components of genus 1, i.e., two toric surfaces.
 
39
The unknotting Theorem is valid more generally for links with m components, in which case the fundamental group is the free group of rank m.
 
Literatur
1.
Zurück zum Zitat Arnaud, H.: On the recognition of tori embedded in R 3. IMAGEN-A, Publishing House of the University of Seville 1, 65–72 (2010) Arnaud, H.: On the recognition of tori embedded in R 3. IMAGEN-A, Publishing House of the University of Seville 1, 65–72 (2010)
2.
Zurück zum Zitat Arnold, V.I.: Indices of singular points of 1-forms on a manifold with boundary, the convolution of invariants of groups generated by reflections, and the singular projections of smooth surfaces. Uspekhi Math. Nauk. 34(2), 3–38 (1979), Russian Math. Surveys 34(2), 1–42 (1979) Arnold, V.I.: Indices of singular points of 1-forms on a manifold with boundary, the convolution of invariants of groups generated by reflections, and the singular projections of smooth surfaces. Uspekhi Math. Nauk. 34(2), 3–38 (1979), Russian Math. Surveys 34(2), 1–42 (1979)
3.
Zurück zum Zitat Arnold, V.I.: The Theory of Singularities and its Applications. Cambridge University Press, Cambridge (1991)MATH Arnold, V.I.: The Theory of Singularities and its Applications. Cambridge University Press, Cambridge (1991)MATH
4.
Zurück zum Zitat Arnold, V.I.: Singularities of Caustics and Wave Fronts. In: Mathematics and its Application, vol. 62. Kluwer, Dordrecht (1991) Arnold, V.I.: Singularities of Caustics and Wave Fronts. In: Mathematics and its Application, vol. 62. Kluwer, Dordrecht (1991)
5.
Zurück zum Zitat Arnold, V.I.: Topological Invariants of Plane Curves and Caustics. In: University Lecture Series, vol. 5. American Mathematical Society, Providence, RI (1994) Arnold, V.I.: Topological Invariants of Plane Curves and Caustics. In: University Lecture Series, vol. 5. American Mathematical Society, Providence, RI (1994)
6.
Zurück zum Zitat Arnold, V.I.: Invariants and perestroikas of plane fronts. In: Proceedings of the Steklov Institute of Mathematics, vol. 209 (1995) Arnold, V.I.: Invariants and perestroikas of plane fronts. In: Proceedings of the Steklov Institute of Mathematics, vol. 209 (1995)
7.
Zurück zum Zitat Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A.: In: Arnold V.I. (ed.) Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993) Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A.: In: Arnold V.I. (ed.) Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993)
8.
Zurück zum Zitat Bellettini, G., Beorchia, V., Paolini, M.: Topological and variational properties of a model for the reconstruction of three-dimensional transparent images with self-occlusions. J. Math. Imaging Vision 32, 265–291 (2008)CrossRefMathSciNet Bellettini, G., Beorchia, V., Paolini, M.: Topological and variational properties of a model for the reconstruction of three-dimensional transparent images with self-occlusions. J. Math. Imaging Vision 32, 265–291 (2008)CrossRefMathSciNet
9.
Zurück zum Zitat Bellettini, G., Beorchia, V., Paolini, M.: An explicit formula for a Bennequin-type invariant for apparent contours. Topology Appl. 156, 747–760 (2009)CrossRefMATHMathSciNet Bellettini, G., Beorchia, V., Paolini, M.: An explicit formula for a Bennequin-type invariant for apparent contours. Topology Appl. 156, 747–760 (2009)CrossRefMATHMathSciNet
10.
Zurück zum Zitat Bennequin, D.: Entrelacements et équations de Pfaff. Astérisque 107–108, 87–161 (1983)MathSciNet Bennequin, D.: Entrelacements et équations de Pfaff. Astérisque 107–108, 87–161 (1983)MathSciNet
11.
Zurück zum Zitat Brasselet, J.-P.: Poincaré-Hopf theorems on singular varieties. In: Brasselet, J.-P., Damon, J., Tráng, L.D. Oka, M. (eds.) Singularities in Geometry and Topology. Proceedings of the Trieste Singularity Summer School and Workshop ICTP, pp. 57–80. World Scientific Publishing (2007) Brasselet, J.-P.: Poincaré-Hopf theorems on singular varieties. In: Brasselet, J.-P., Damon, J., Tráng, L.D. Oka, M. (eds.) Singularities in Geometry and Topology. Proceedings of the Trieste Singularity Summer School and Workshop ICTP, pp. 57–80. World Scientific Publishing (2007)
12.
Zurück zum Zitat Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Am. Math. Soc. 66, 74–76 (1960)CrossRefMATH Brown, M.: A proof of the generalized Schoenflies theorem. Bull. Am. Math. Soc. 66, 74–76 (1960)CrossRefMATH
14.
Zurück zum Zitat Chmutov, S., Duzhin, S., Mostovoy, J.: Vassiliev Knot Invariants. Cambridge University Press, Cambridge (2012)CrossRefMATH Chmutov, S., Duzhin, S., Mostovoy, J.: Vassiliev Knot Invariants. Cambridge University Press, Cambridge (2012)CrossRefMATH
15.
16.
Zurück zum Zitat de Rham, G.: Introduction aux polynomes d’un noeud. Ens. Math. XIII, 187–194 (1967) de Rham, G.: Introduction aux polynomes d’un noeud. Ens. Math. XIII, 187–194 (1967)
17.
Zurück zum Zitat Dimca, A.: Singularities and Topology of hypersurfaces. In: Universitext. Springer, New York (2006) Dimca, A.: Singularities and Topology of hypersurfaces. In: Universitext. Springer, New York (2006)
18.
Zurück zum Zitat Fox, R.H.: Free differential calculus. I. Ann. Math. 57, 547–560 (1953)CrossRef Fox, R.H.: Free differential calculus. I. Ann. Math. 57, 547–560 (1953)CrossRef
19.
Zurück zum Zitat Fox, R.H.: Free differential calculus. II: the isomorphism problem of groups. Ann. Math. 59, 196–210 (1954)MATH Fox, R.H.: Free differential calculus. II: the isomorphism problem of groups. Ann. Math. 59, 196–210 (1954)MATH
20.
Zurück zum Zitat Fox, R.H.: A quick trip through knot theory. In: M.K. Fort jun. (ed.), Topology of 3-manifolds and Related Topics. Proceedings of the University of Georgia Institute, pp. 120–167. Prentice-Hall, New Jersey (1961) Fox, R.H.: A quick trip through knot theory. In: M.K. Fort jun. (ed.), Topology of 3-manifolds and Related Topics. Proceedings of the University of Georgia Institute, pp. 120–167. Prentice-Hall, New Jersey (1961)
22.
Zurück zum Zitat Gibson, C.G., Hobbs, C.A.: Singularities of general two-dimensional planar motion. J. Math. New Zealand 25, 141–163 (1996)MATHMathSciNet Gibson, C.G., Hobbs, C.A.: Singularities of general two-dimensional planar motion. J. Math. New Zealand 25, 141–163 (1996)MATHMathSciNet
23.
Zurück zum Zitat Hacon, D., Mendes de Jesus, C., Romero Fuster, M.C.: Global topological invariants of stable maps from a surface to the plane. In: Proceedings of the 6th Workshop on Real and Complex Singularities, 2001. Lecture Notes in Pure Applied Mathematics, vol. 232, pp. 227–235 (2003)MathSciNet Hacon, D., Mendes de Jesus, C., Romero Fuster, M.C.: Global topological invariants of stable maps from a surface to the plane. In: Proceedings of the 6th Workshop on Real and Complex Singularities, 2001. Lecture Notes in Pure Applied Mathematics, vol. 232, pp. 227–235 (2003)MathSciNet
24.
Zurück zum Zitat Hatcher, A.: Algebraic Topology Online Book. Cambridge University Press, Cambridge (2002) Hatcher, A.: Algebraic Topology Online Book. Cambridge University Press, Cambridge (2002)
25.
Zurück zum Zitat Kawauchi, A.: A Survey of Knot Theory. Birkhäuser, Basel (1996)MATH Kawauchi, A.: A Survey of Knot Theory. Birkhäuser, Basel (1996)MATH
26.
Zurück zum Zitat Levine, H.I.: Stable maps: an introduction with low dimensional examples. Bol. Soc. Bras. Mat. 7, 145–184 (1972)CrossRef Levine, H.I.: Stable maps: an introduction with low dimensional examples. Bol. Soc. Bras. Mat. 7, 145–184 (1972)CrossRef
27.
Zurück zum Zitat Levine, H.I.: Computing the Euler characteristic of a manifold with boundary. Proc. Am. Math. Soc. 123, 2563–2567 (1995)CrossRefMATH Levine, H.I.: Computing the Euler characteristic of a manifold with boundary. Proc. Am. Math. Soc. 123, 2563–2567 (1995)CrossRefMATH
28.
Zurück zum Zitat Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Publications, New York (1976)MATH Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. Dover Publications, New York (1976)MATH
30.
Zurück zum Zitat Mather, J.N.: Infinite dimensional group actions, Cartan Fest. Analyse et Topologíe, Astérisque Paris, Soc. Math. de France. 32, 33, 165–172 (1976) Mather, J.N.: Infinite dimensional group actions, Cartan Fest. Analyse et Topologíe, Astérisque Paris, Soc. Math. de France. 32, 33, 165–172 (1976)
31.
Zurück zum Zitat Moise, E.E.: Geometric Topology in Dimensions 2 and 3. In: Graduate Texts in Mathematics, vol. 47. Springer, New York (1977) Moise, E.E.: Geometric Topology in Dimensions 2 and 3. In: Graduate Texts in Mathematics, vol. 47. Springer, New York (1977)
32.
Zurück zum Zitat Ohmoto, T.: Vassiliev type invariants for genereric mappings, revisited. In: Real and Complex Singularities. Contemporary Mathematics, vol. 569, pp. 143–159. American Mathematical Society, Providence, RI (2012) Ohmoto, T.: Vassiliev type invariants for genereric mappings, revisited. In: Real and Complex Singularities. Contemporary Mathematics, vol. 569, pp. 143–159. American Mathematical Society, Providence, RI (2012)
34.
Zurück zum Zitat Petitot, J.: Neurogéométrie de la Vision - Modèles Mathématiques et Physiques des Architectures Fonctionnelles, Les Editions de l’École Polythecnique, Paris (2008) Petitot, J.: Neurogéométrie de la Vision - Modèles Mathématiques et Physiques des Architectures Fonctionnelles, Les Editions de l’École Polythecnique, Paris (2008)
36.
Zurück zum Zitat Polyak, M.: On the Bennequin invariant of Legendrian curves and its quantization. C. R. Acad. Sci., Paris Sér. I 322, 77–82 (1996)MATHMathSciNet Polyak, M.: On the Bennequin invariant of Legendrian curves and its quantization. C. R. Acad. Sci., Paris Sér. I 322, 77–82 (1996)MATHMathSciNet
37.
Zurück zum Zitat Richeson, D.: Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press, New Jersey (2008) Richeson, D.: Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press, New Jersey (2008)
38.
Zurück zum Zitat Richeson, D.: Knots and Links. AMS Chelsea Publishing, Canada (2003) Richeson, D.: Knots and Links. AMS Chelsea Publishing, Canada (2003)
39.
Zurück zum Zitat Seifert, H., Threlfall, W.: Lehrbuch der Topologie, Teubner, Leipzig, 1934. Translated into English as A Textbook of Topology. Academic Press, New York (1980) Seifert, H., Threlfall, W.: Lehrbuch der Topologie, Teubner, Leipzig, 1934. Translated into English as A Textbook of Topology. Academic Press, New York (1980)
40.
Zurück zum Zitat Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn. vol. 1. Publish or Perish, Inc., Houston, Texas (1999)MATH Spivak, M.: A Comprehensive Introduction to Differential Geometry, 3rd edn. vol. 1. Publish or Perish, Inc., Houston, Texas (1999)MATH
41.
Zurück zum Zitat Tabachnikov, S.L.: Computation of the Bennequin invariant of a Legendrian curve from the geometry of its front. Funct. Anal. Appl. 22, 89–90 (1988)MathSciNet Tabachnikov, S.L.: Computation of the Bennequin invariant of a Legendrian curve from the geometry of its front. Funct. Anal. Appl. 22, 89–90 (1988)MathSciNet
42.
Zurück zum Zitat Thom, R.: The bifurcation subset of a space of maps. In: Manifolds-Amsterdam. Lecture Notes in Mathematics, vol. 197, pp. 202–208. Springer, Berlin (1971) Thom, R.: The bifurcation subset of a space of maps. In: Manifolds-Amsterdam. Lecture Notes in Mathematics, vol. 197, pp. 202–208. Springer, Berlin (1971)
43.
Zurück zum Zitat Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin, Inc., Reading, Massachussetts (1972) Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin, Inc., Reading, Massachussetts (1972)
44.
45.
Zurück zum Zitat Vassiliev, V.A.: Cohomology of knot spaces. Adv. Sov. Math. 21, 23–69 (1990)MathSciNet Vassiliev, V.A.: Cohomology of knot spaces. Adv. Sov. Math. 21, 23–69 (1990)MathSciNet
46.
Zurück zum Zitat Wilson, L.C.: Equivalence of stable mappings between two-dimensional manifolds. J. Differ. Geom. 11, 1–14 (1976)MATH Wilson, L.C.: Equivalence of stable mappings between two-dimensional manifolds. J. Differ. Geom. 11, 1–14 (1976)MATH
Metadaten
Titel
Invariants of an Apparent Contour
verfasst von
Giovanni Bellettini
Valentina Beorchia
Maurizio Paolini
Franco Pasquarelli
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45191-5_7