Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Inverse Acoustic Obstacle Scattering

verfasst von : David Colton, Rainer Kress

Erschienen in: Inverse Acoustic and Electromagnetic Scattering Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the analysis of the preceding chapters, we now are well prepared for studying inverse acoustic obstacle scattering problems. We recall that the direct scattering problem is, given information on the boundary of the scatterer and the nature of the boundary condition, to find the scattered wave and in particular its behavior at large distances from the scatterer, i.e., its far field. The inverse problem starts from this answer to the direct problem, i.e., a knowledge of the far field pattern, and asks for the nature of the scatterer. Of course, there is a large variety of possible inverse problems, for example, if the boundary condition is known, find the shape of the scatterer, or, if the shape is known, find the boundary condition, or, if the shape and the type of the boundary condition are known for a penetrable scatterer, find the space dependent coefficients in the transmission or resistive boundary condition, etc. Here, following the main guideline of our book, we will concentrate on one model problem for which we will develop ideas which in general can also be used to study a wider class of related problems. The inverse problem we consider is, given the far field pattern for one or several incident plane waves and knowing that the scatterer is sound-soft, to determine the shape of the scatterer. We want to discuss this inverse problem for frequencies in the resonance region, that is, for scatterers D and wave numbers k such that the wavelengths 2πk is less than or of a comparable size to the diameter of the scatterer. This inverse problem turns out to be nonlinear and improperly posed. Although both of these properties make the inverse problem hard to solve, it is the latter which presents the more challenging difficulties. The inverse obstacle problem is improperly posed since, as we already know, the determination of the scattered wave u s from a given far field pattern u is improperly posed. It is nonlinear since, given the incident wave u i and the scattered wave u s, the problem of finding the boundary of the scatterer as the location of the zeros of the total wave u i + u s is nonlinear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.MATH Adams, R.A.: Sobolev Spaces. Academic Press, New York 1975.MATH
4.
Zurück zum Zitat Akduman, I., and Kress, R.: Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Science 38, 1055–1064 (2003).CrossRef Akduman, I., and Kress, R.: Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape. Radio Science 38, 1055–1064 (2003).CrossRef
7.
Zurück zum Zitat Alessandrini, G., and Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Amer. Math. Soc. 133, 1685–1691 (2005).CrossRefMathSciNetMATH Alessandrini, G., and Rondi, L.: Determining a sound–soft polyhedral scatterer by a single far–field measurement. Proc. Amer. Math. Soc. 133, 1685–1691 (2005).CrossRefMathSciNetMATH
8.
Zurück zum Zitat Altundag, A., and Kress, R.: On a two-dimensional inverse scattering problem for a dielectric. Applicable Analysis 91, 757–771 (2012).CrossRefMathSciNetMATH Altundag, A., and Kress, R.: On a two-dimensional inverse scattering problem for a dielectric. Applicable Analysis 91, 757–771 (2012).CrossRefMathSciNetMATH
9.
Zurück zum Zitat Altundag, A., and Kress, R.: An iterative method for a two-dimensional inverse scattering problem for a dielectric. Jour. on Inverse and Ill-Posed Problem 20, 575–590 (2012).MathSciNetMATH Altundag, A., and Kress, R.: An iterative method for a two-dimensional inverse scattering problem for a dielectric. Jour. on Inverse and Ill-Posed Problem 20, 575–590 (2012).MathSciNetMATH
11.
Zurück zum Zitat Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scattering problem for acoustic waves. J. Diff. Equations 46, 46–58 (1982).CrossRefMathSciNetMATH Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scattering problem for acoustic waves. J. Diff. Equations 46, 46–58 (1982).CrossRefMathSciNetMATH
15.
Zurück zum Zitat Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission problem for the Helmholtz equation. Inverse Problems 3, 149–180 (1987).CrossRefMathSciNetMATH Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission problem for the Helmholtz equation. Inverse Problems 3, 149–180 (1987).CrossRefMathSciNetMATH
16.
Zurück zum Zitat Aramini, R., Caviglia, G., Masa, A., and Piana, M.: The linear sampling method and energy conservation. Inverse Problems 26, 05504 (2010).CrossRefMathSciNet Aramini, R., Caviglia, G., Masa, A., and Piana, M.: The linear sampling method and energy conservation. Inverse Problems 26, 05504 (2010).CrossRefMathSciNet
18.
Zurück zum Zitat Arens, T., and Lechleiter, A.: The linear sampling method revisited. Jour. Integral Equations and Applications 21, 179–202 (2009).CrossRefMathSciNetMATH Arens, T., and Lechleiter, A.: The linear sampling method revisited. Jour. Integral Equations and Applications 21, 179–202 (2009).CrossRefMathSciNetMATH
22.
Zurück zum Zitat Audibert, L., and Haddar, H.: A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements. Inverse Problems 30, 035011 (2015).CrossRefMATH Audibert, L., and Haddar, H.: A generalized formulation of the linear sampling method with exact characterization of targets in terms of far field measurements. Inverse Problems 30, 035011 (2015).CrossRefMATH
28.
Zurück zum Zitat Bellis, C., Bonnet, M., and Cakoni, F.: Acoustic inverse scattering using topological derivative of far-field measurements-based L 2 cost functionals. Inverse Problems 29, 075012 (2013).CrossRefMathSciNetMATH Bellis, C., Bonnet, M., and Cakoni, F.: Acoustic inverse scattering using topological derivative of far-field measurements-based L 2 cost functionals. Inverse Problems 29, 075012 (2013).CrossRefMathSciNetMATH
33.
Zurück zum Zitat Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.MATH Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.MATH
34.
Zurück zum Zitat Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).CrossRefMathSciNetMATH Blöhbaum, J.: Optimisation methods for an inverse problem with time-harmonic electromagnetic waves: an inverse problem in electromagnetic scattering. Inverse Problems 5, 463–482 (1989).CrossRefMathSciNetMATH
35.
Zurück zum Zitat Bojarski, N.N.: Three dimensional electromagnetic short pulse inverse scattering. Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse 1967. Bojarski, N.N.: Three dimensional electromagnetic short pulse inverse scattering. Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse 1967.
36.
41.
Zurück zum Zitat Bourgeois, L., Chaulet, N., and Haddar, H.: Stable reconstruction of generalized impedance boundary conditions. Inverse Problems 27, 095002 (2011).CrossRefMathSciNetMATH Bourgeois, L., Chaulet, N., and Haddar, H.: Stable reconstruction of generalized impedance boundary conditions. Inverse Problems 27, 095002 (2011).CrossRefMathSciNetMATH
42.
Zurück zum Zitat Bourgeois, L., Chaulet, N., and Haddar, H.: On simultaneous identification of a scatterer and its generalized impedance boundary condition. SIAM J. Sci. Comput. 34, A1824–A1848 (2012).CrossRefMATH Bourgeois, L., Chaulet, N., and Haddar, H.: On simultaneous identification of a scatterer and its generalized impedance boundary condition. SIAM J. Sci. Comput. 34, A1824–A1848 (2012).CrossRefMATH
43.
Zurück zum Zitat Bourgeois, L., and Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4, 19–38, (2010).CrossRefMathSciNetMATH Bourgeois, L., and Haddar, H.: Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging 4, 19–38, (2010).CrossRefMathSciNetMATH
50.
Zurück zum Zitat Cakoni, F., and Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004).CrossRefMathSciNetMATH Cakoni, F., and Colton, D.: The determination of the surface impedance of a partially coated obstacle from far field data. SIAM J. Appl. Math. 64, 709–723 (2004).CrossRefMathSciNetMATH
51.
Zurück zum Zitat Cakoni, F., and Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin 2006.MATH Cakoni, F., and Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin 2006.MATH
57.
Zurück zum Zitat Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.CrossRefMATH Cakoni, F., Colton, D., and Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. SIAM, Philadelphia 2016.CrossRefMATH
65.
Zurück zum Zitat Cakoni, F., Hu, Y., and Kress, R.: Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging. Inverse Problems 30, 105009 (2014).CrossRefMathSciNetMATH Cakoni, F., Hu, Y., and Kress, R.: Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging. Inverse Problems 30, 105009 (2014).CrossRefMathSciNetMATH
68.
Zurück zum Zitat Cakoni, F., and Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Problems 29, 015005 (2013).CrossRefMathSciNetMATH Cakoni, F., and Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Problems 29, 015005 (2013).CrossRefMathSciNetMATH
74.
Zurück zum Zitat Catapano, I., Crocco, L., and Isernia, T.: On simple methods for shape reconstruction of unknown scatterers. IEEE Trans. Antennas Prop. 55, 1431–1436 (2007).CrossRef Catapano, I., Crocco, L., and Isernia, T.: On simple methods for shape reconstruction of unknown scatterers. IEEE Trans. Antennas Prop. 55, 1431–1436 (2007).CrossRef
80.
Zurück zum Zitat Cheng, J., and Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19, 1361–1384 (2003).CrossRefMathSciNetMATH Cheng, J., and Yamamoto, M.: Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Problems 19, 1361–1384 (2003).CrossRefMathSciNetMATH
91.
Zurück zum Zitat Colton, D., and Kirsch, A.: Karp’s theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783–788 (1988).MathSciNetMATH Colton, D., and Kirsch, A.: Karp’s theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783–788 (1988).MathSciNetMATH
94.
Zurück zum Zitat Colton, D., and Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383–393 (1996).CrossRefMathSciNetMATH Colton, D., and Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383–393 (1996).CrossRefMathSciNetMATH
102.
Zurück zum Zitat Colton, D., and Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Applied Science 24, 1289–1303 (2001).CrossRefMathSciNetMATH Colton, D., and Kress, R.: On the denseness of Herglotz wave functions and electromagnetic Herglotz pairs in Sobolev spaces. Math. Methods Applied Science 24, 1289–1303 (2001).CrossRefMathSciNetMATH
103.
104.
Zurück zum Zitat Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefMATH Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefMATH
110.
Zurück zum Zitat Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039–1053 (1985).CrossRefMathSciNetMATH Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039–1053 (1985).CrossRefMathSciNetMATH
111.
Zurück zum Zitat Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).CrossRefMathSciNetMATH Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506–523 (1986).CrossRefMathSciNetMATH
112.
Zurück zum Zitat Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Comp. 8, 278–291 (1987).CrossRefMathSciNetMATH Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Comp. 8, 278–291 (1987).CrossRefMathSciNetMATH
126.
Zurück zum Zitat Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).CrossRefMathSciNetMATH Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).CrossRefMathSciNetMATH
127.
Zurück zum Zitat Colton, D., and Sleeman, B.D.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh Math. Soc. 44, 449–454 (2001).CrossRefMathSciNetMATH Colton, D., and Sleeman, B.D.: An approximation property of importance in inverse scattering theory. Proc. Edinburgh Math. Soc. 44, 449–454 (2001).CrossRefMathSciNetMATH
132.
Zurück zum Zitat Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge 2012.CrossRefMATH Devaney, A.J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge 2012.CrossRefMATH
134.
Zurück zum Zitat Dorn, O., and Lesselier, D.: Level set methods for inverse scattering - some recent developments. Inverse Problems 25, 125001 (2009).CrossRefMathSciNetMATH Dorn, O., and Lesselier, D.: Level set methods for inverse scattering - some recent developments. Inverse Problems 25, 125001 (2009).CrossRefMathSciNetMATH
141.
Zurück zum Zitat Farhat, C., Tezaur, R., and Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Problems 18, 1229–1246 (2002).CrossRefMathSciNetMATH Farhat, C., Tezaur, R., and Djellouli, R.: On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method. Inverse Problems 18, 1229–1246 (2002).CrossRefMathSciNetMATH
142.
Zurück zum Zitat Feijoo, G.R.: A new method in inverse scattering based on the topological derivative. Inverse Problems 20, 1819–1840 (2004).CrossRefMathSciNetMATH Feijoo, G.R.: A new method in inverse scattering based on the topological derivative. Inverse Problems 20, 1819–1840 (2004).CrossRefMathSciNetMATH
147.
Zurück zum Zitat Gerlach, T. and Kress, R.: Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12, 619–625 (1996).CrossRefMathSciNetMATH Gerlach, T. and Kress, R.: Uniqueness in inverse obstacle scattering with conductive boundary condition. Inverse Problems 12, 619–625 (1996).CrossRefMathSciNetMATH
149.
Zurück zum Zitat Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.CrossRefMATH Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.CrossRefMATH
150.
Zurück zum Zitat Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Problems 21, 1195–1205 (2005).CrossRefMathSciNetMATH Gintides, D.: Local uniqueness for the inverse scattering problem in acoustics via the Faber–Krahn inequality. Inverse Problems 21, 1195–1205 (2005).CrossRefMathSciNetMATH
162.
Zurück zum Zitat Haas, M., and Lehner, G.: Inverse 2D obstacle scattering by adaptive iteration. IEEE Transactions on Magnetics 33, 1958–1961 (1997)CrossRef Haas, M., and Lehner, G.: Inverse 2D obstacle scattering by adaptive iteration. IEEE Transactions on Magnetics 33, 1958–1961 (1997)CrossRef
181.
Zurück zum Zitat Hanke, M., Hettlich, F., and Scherzer, O.: The Landweber iteration for an inverse scattering problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3, Part C (Wang et al, eds). Hanke, M., Hettlich, F., and Scherzer, O.: The Landweber iteration for an inverse scattering problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3, Part C (Wang et al, eds).
183.
Zurück zum Zitat Harbrecht, H., and Hohage. T.: Fast methods for three-dimensional inverse obstacle scattering problems. Jour. Integral Equations and Appl. 19, 237–260 (2007). Harbrecht, H., and Hohage. T.: Fast methods for three-dimensional inverse obstacle scattering problems. Jour. Integral Equations and Appl. 19, 237–260 (2007).
187.
Zurück zum Zitat Hettlich, F.: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10, 129–144 (1994).CrossRefMathSciNetMATH Hettlich, F.: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10, 129–144 (1994).CrossRefMathSciNetMATH
189.
Zurück zum Zitat Hettlich, F.: An iterative method for the inverse scattering problem from sound-hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996). Hettlich, F.: An iterative method for the inverse scattering problem from sound-hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996).
190.
Zurück zum Zitat Hettlich, F., and Rundell, W.: A second degree method for nonlinear inverse problem. SIAM J. Numer. Anal. 37, 587–620 (2000).CrossRefMathSciNetMATH Hettlich, F., and Rundell, W.: A second degree method for nonlinear inverse problem. SIAM J. Numer. Anal. 37, 587–620 (2000).CrossRefMathSciNetMATH
193.
Zurück zum Zitat Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279–1299 (1997).CrossRefMathSciNetMATH Hohage, T.: Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279–1299 (1997).CrossRefMathSciNetMATH
194.
Zurück zum Zitat Hohage, T.: Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially Ill-Posed Problems. Dissertation, Linz 1999. Hohage, T.: Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and Nonlinear Exponentially Ill-Posed Problems. Dissertation, Linz 1999.
200.
Zurück zum Zitat Ikehata, M.: Reconstruction of the shape of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 14, 949–954 (1998).CrossRefMathSciNetMATH Ikehata, M.: Reconstruction of the shape of an obstacle from the scattering amplitude at a fixed frequency. Inverse Problems 14, 949–954 (1998).CrossRefMathSciNetMATH
202.
Zurück zum Zitat Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering problem. IEEE Trans. Ant. Prop. AP-18, 633–642 (1970).CrossRef Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering problem. IEEE Trans. Ant. Prop. AP-18, 633–642 (1970).CrossRef
203.
204.
Zurück zum Zitat Isakov, V.: Inverse Problems for Partial Differential Equations. 2nd ed, Springer, Berlin 2006.MATH Isakov, V.: Inverse Problems for Partial Differential Equations. 2nd ed, Springer, Berlin 2006.MATH
207.
Zurück zum Zitat Ivanyshyn, O.: Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems and Imaging 1, 609–622 (2007).CrossRefMathSciNetMATH Ivanyshyn, O.: Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems and Imaging 1, 609–622 (2007).CrossRefMathSciNetMATH
208.
Zurück zum Zitat Ivanyshyn, O.: Nonlinear Boundary Integral Equations in Inverse Scattering. Dissertation, Göttingen, 2007. Ivanyshyn, O.: Nonlinear Boundary Integral Equations in Inverse Scattering. Dissertation, Göttingen, 2007.
209.
Zurück zum Zitat Ivanyshyn Yaman, O.: Reconstruction of generalized impedance functions for 3D acoustic scattering. J. Comput. Phys., to appear. Ivanyshyn Yaman, O.: Reconstruction of generalized impedance functions for 3D acoustic scattering. J. Comput. Phys., to appear.
210.
Zurück zum Zitat Ivanyshyn, O., and Johansson, T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle. J. Integral Equations Appl. 19, 289–308 (2007).CrossRefMathSciNetMATH Ivanyshyn, O., and Johansson, T.: Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle. J. Integral Equations Appl. 19, 289–308 (2007).CrossRefMathSciNetMATH
211.
Zurück zum Zitat Ivanyshyn, O., and Johansson, T.: A coupled boundary integral equation method for inverse sound-soft scattering. In: Proceedings of waves 2007. The 8th international conference on mathematical and numerical aspects of waves, University of Reading, 153–155 (2007). Ivanyshyn, O., and Johansson, T.: A coupled boundary integral equation method for inverse sound-soft scattering. In: Proceedings of waves 2007. The 8th international conference on mathematical and numerical aspects of waves, University of Reading, 153–155 (2007).
212.
Zurück zum Zitat Ivanyshyn, O., and Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering, (Fotiatis and Massalas, eds). World Scientific, Singapore, 39–50 (2006). Ivanyshyn, O., and Kress, R.: Nonlinear integral equations in inverse obstacle scattering. In: Mathematical Methods in Scattering Theory and Biomedical Engineering, (Fotiatis and Massalas, eds). World Scientific, Singapore, 39–50 (2006).
213.
Zurück zum Zitat Ivanyshyn, O., and Kress, R.: Inverse scattering for planar cracks via nonlinear integral equations. Math. Meth. Appl. Sciences 31, 1221–1232 (2007).CrossRefMathSciNetMATH Ivanyshyn, O., and Kress, R.: Inverse scattering for planar cracks via nonlinear integral equations. Math. Meth. Appl. Sciences 31, 1221–1232 (2007).CrossRefMathSciNetMATH
214.
Zurück zum Zitat Ivanyshyn, O., and Kress, R.: Identification of sound-soft 3D obstacles from phaseless data. Inverse Problems and Imaging 4, 131–149 (2010).CrossRefMathSciNetMATH Ivanyshyn, O., and Kress, R.: Identification of sound-soft 3D obstacles from phaseless data. Inverse Problems and Imaging 4, 131–149 (2010).CrossRefMathSciNetMATH
215.
Zurück zum Zitat Ivanyshyn, O., and Kress, R.: Inverse scattering for surface impedance from phase-less far field data. J. Comput. Phys. 230, 3443–3452 (2011).CrossRefMathSciNetMATH Ivanyshyn, O., and Kress, R.: Inverse scattering for surface impedance from phase-less far field data. J. Comput. Phys. 230, 3443–3452 (2011).CrossRefMathSciNetMATH
216.
Zurück zum Zitat Ivanyshyn, O., Kress, R., and Serranho, P.: Huygens’ principle and iterative methods in inverse obstacle scattering. Adv. Comput. Math. 33, 413–429 (2010).CrossRefMathSciNetMATH Ivanyshyn, O., Kress, R., and Serranho, P.: Huygens’ principle and iterative methods in inverse obstacle scattering. Adv. Comput. Math. 33, 413–429 (2010).CrossRefMathSciNetMATH
222.
Zurück zum Zitat Johansson, T., and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007).CrossRefMathSciNetMATH Johansson, T., and Sleeman, B.: Reconstruction of an acoustically sound-soft obstacle from one incident field and the far field pattern. IMA J. Appl. Math. 72, 96–112 (2007).CrossRefMathSciNetMATH
228.
Zurück zum Zitat Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromagnetic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291–300 (1962). Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromagnetic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291–300 (1962).
236.
239.
Zurück zum Zitat Kirsch, A.: Characterization of the shape of the scattering obstacle by the spectral data of the far field operator. Inverse Problems 14, 1489–1512 (1998).CrossRefMathSciNetMATH Kirsch, A.: Characterization of the shape of the scattering obstacle by the spectral data of the far field operator. Inverse Problems 14, 1489–1512 (1998).CrossRefMathSciNetMATH
243.
Zurück zum Zitat Kirsch, A., and Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford, 2008.MATH Kirsch, A., and Grinberg, N.: The Factorization Method for Inverse Problems. Oxford University Press, Oxford, 2008.MATH
245.
Zurück zum Zitat Kirsch, A., and Kress, R.: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77, 93–102 (1986). Kirsch, A., and Kress, R.: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77, 93–102 (1986).
247.
Zurück zum Zitat Kirsch, A., and Kress, R.: An optimization method in inverse acoustic scattering. In: Boundary elements IX, Vol 3. Fluid Flow and Potential Applications (Brebbia, Wendland and Kuhn, eds). Springer, Berlin, 3–18 (1987). Kirsch, A., and Kress, R.: An optimization method in inverse acoustic scattering. In: Boundary elements IX, Vol 3. Fluid Flow and Potential Applications (Brebbia, Wendland and Kuhn, eds). Springer, Berlin, 3–18 (1987).
249.
Zurück zum Zitat Kirsch, A., Kress, R., Monk, P., and Zinn, A.: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4, 749–770 (1988).CrossRefMathSciNetMATH Kirsch, A., Kress, R., Monk, P., and Zinn, A.: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4, 749–770 (1988).CrossRefMathSciNetMATH
266.
Zurück zum Zitat Kress, R.: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formulations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67–92 (1997). Kress, R.: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formulations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67–92 (1997).
267.
Zurück zum Zitat Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Problems 19, 91–104 (2003).CrossRefMathSciNetMATH Kress, R.: Newton’s Method for inverse obstacle scattering meets the method of least squares. Inverse Problems 19, 91–104 (2003).CrossRefMathSciNetMATH
269.
Zurück zum Zitat Kress, R.: Integral equation methods in inverse obstacle scattering with a generalized impedance boundary condition. In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan (Dick, Kuo and Wozniakowski, eds). Springer, New York, 721–740 (2018). Kress, R.: Integral equation methods in inverse obstacle scattering with a generalized impedance boundary condition. In: Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan (Dick, Kuo and Wozniakowski, eds). Springer, New York, 721–740 (2018).
270.
271.
273.
274.
Zurück zum Zitat Kress, R., and Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data. In: Inverse Problems in Medical Imaging and Nondestructive Testing (Engl, Louis and Rundell , eds). Springer, Wien, 75–92 (1997). Kress, R., and Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data. In: Inverse Problems in Medical Imaging and Nondestructive Testing (Engl, Louis and Rundell , eds). Springer, Wien, 75–92 (1997).
275.
276.
277.
Zurück zum Zitat Kress, R., and Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005).CrossRefMathSciNetMATH Kress, R., and Rundell, W.: Nonlinear integral equations and the iterative solution for an inverse boundary value problem. Inverse Problems 21, 1207–1223 (2005).CrossRefMathSciNetMATH
278.
Zurück zum Zitat Kress, R., and Rundell, W.: Inverse scattering for shape and impedance revisited. Jour. Integral Equations and Appl. 30, 293–311 (2018).CrossRefMathSciNetMATH Kress, R., and Rundell, W.: Inverse scattering for shape and impedance revisited. Jour. Integral Equations and Appl. 30, 293–311 (2018).CrossRefMathSciNetMATH
279.
280.
Zurück zum Zitat Kress, R., and Serranho, P.: A hybrid method for sound-hard obstacle reconstruction. J. Comput. Appl. Math. 24, 418–427 (2007).CrossRefMathSciNetMATH Kress, R., and Serranho, P.: A hybrid method for sound-hard obstacle reconstruction. J. Comput. Appl. Math. 24, 418–427 (2007).CrossRefMathSciNetMATH
281.
Zurück zum Zitat Kress, R., Tezel, N., and Yaman, F.: A second order Newton method for sound soft inverse obstacle scattering. Jour. Inverse and Ill-Posed Problems 17, 173–185 (2009).MathSciNetMATH Kress, R., Tezel, N., and Yaman, F.: A second order Newton method for sound soft inverse obstacle scattering. Jour. Inverse and Ill-Posed Problems 17, 173–185 (2009).MathSciNetMATH
282.
Zurück zum Zitat Kress, R., and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Comp. Appl. Math. 42, 49–61 (1992).CrossRefMathSciNetMATH Kress, R., and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Comp. Appl. Math. 42, 49–61 (1992).CrossRefMathSciNetMATH
289.
Zurück zum Zitat Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127–467 (1987). Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127–467 (1987).
292.
Zurück zum Zitat Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.MATH Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.MATH
295.
Zurück zum Zitat Lee, K.M.: Inverse scattering via nonlinear integral equations for a Neumann crack. Inverse Problems 22, 1989–2000 ( 2006).CrossRefMathSciNetMATH Lee, K.M.: Inverse scattering via nonlinear integral equations for a Neumann crack. Inverse Problems 22, 1989–2000 ( 2006).CrossRefMathSciNetMATH
297.
Zurück zum Zitat Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.CrossRefMATH Leis, R.: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.CrossRefMATH
300.
Zurück zum Zitat Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I : One step method. SIAM J. Imaging Sci. 10, 1291–1321 (2017).MATH Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part I : One step method. SIAM J. Imaging Sci. 10, 1291–1321 (2017).MATH
301.
Zurück zum Zitat Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part II : Iterative method. SIAM J. Imaging Sci. 11, 734–769 (2018).MATH Le Louër, F., and Rapún, M.-L.: Topological sensitivity for solving inverse multiple scattering problems in 3D electromagnetism. Part II : Iterative method. SIAM J. Imaging Sci. 11, 734–769 (2018).MATH
305.
Zurück zum Zitat Liu, C.: Inverse obstacle problem: local uniqueness for rougher obstacles and the identification of a ball. Inverse Problems 13, 1063–1069 (1997).CrossRefMathSciNetMATH Liu, C.: Inverse obstacle problem: local uniqueness for rougher obstacles and the identification of a ball. Inverse Problems 13, 1063–1069 (1997).CrossRefMathSciNetMATH
307.
Zurück zum Zitat Liu, H., and Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Problems 22, 515–524 (2006).CrossRefMathSciNetMATH Liu, H., and Zou, J.: Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Problems 22, 515–524 (2006).CrossRefMathSciNetMATH
315.
Zurück zum Zitat McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.MATH McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge 2000.MATH
318.
Zurück zum Zitat Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).CrossRefMathSciNetMATH Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).CrossRefMathSciNetMATH
319.
Zurück zum Zitat Mönch, L.: On the inverse acoustic scattering problem from an open arc: the sound-hard case. Inverse Problems 13, 1379–1392 (1997).CrossRefMathSciNetMATH Mönch, L.: On the inverse acoustic scattering problem from an open arc: the sound-hard case. Inverse Problems 13, 1379–1392 (1997).CrossRefMathSciNetMATH
321.
Zurück zum Zitat Moré, J.J.: The Levenberg–Marquardt algorithm, implementation and theory. In: Numerical analysis (Watson, ed). Springer Lecture Notes in Mathematics 630, Berlin, 105–116 (1977). Moré, J.J.: The Levenberg–Marquardt algorithm, implementation and theory. In: Numerical analysis (Watson, ed). Springer Lecture Notes in Mathematics 630, Berlin, 105–116 (1977).
335.
Zurück zum Zitat Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart and Wiley, New York 1986. Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart and Wiley, New York 1986.
344.
Zurück zum Zitat Osher, S., and Sethian, J. A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988).CrossRefMathSciNetMATH Osher, S., and Sethian, J. A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988).CrossRefMathSciNetMATH
352.
353.
Zurück zum Zitat Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).CrossRefMathSciNetMATH Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).CrossRefMathSciNetMATH
354.
Zurück zum Zitat Potthast, R.: Fréchet Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Maxwellgleichungen. Dissertation, Göttingen 1994. Potthast, R.: Fréchet Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Maxwellgleichungen. Dissertation, Göttingen 1994.
356.
358.
Zurück zum Zitat Potthast, R.: A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math 61, 119–140 (1998).CrossRefMathSciNetMATH Potthast, R.: A point-source method for inverse acoustic and electromagnetic obstacle scattering problems. IMA J. Appl. Math 61, 119–140 (1998).CrossRefMathSciNetMATH
359.
Zurück zum Zitat Potthast, R.: Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114, 247–274 (2000).CrossRefMathSciNetMATH Potthast, R.: Stability estimates and reconstructions in inverse acoustic scattering using singular sources. J. Comp. Appl. Math. 114, 247–274 (2000).CrossRefMathSciNetMATH
360.
361.
Zurück zum Zitat Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London 2001.CrossRefMATH Potthast, R.: Point-Sources and Multipoles in Inverse Scattering Theory. Chapman & Hall, London 2001.CrossRefMATH
363.
364.
Zurück zum Zitat Potthast, R. and Schulz, J.: A multiwave range test for obstacle reconstructions with unknown physical properties. J. Comput. Appl. Math. 205, 53–71 (2007).CrossRefMathSciNetMATH Potthast, R. and Schulz, J.: A multiwave range test for obstacle reconstructions with unknown physical properties. J. Comput. Appl. Math. 205, 53–71 (2007).CrossRefMathSciNetMATH
368.
379.
Zurück zum Zitat Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Ant. Prop. AP-29, 232–238 (1981).CrossRefMATH Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse problem. IEEE Trans. Ant. Prop. AP-29, 232–238 (1981).CrossRefMATH
383.
Zurück zum Zitat Santosa, F.: A level set approach for inverse problems involving obstacles. ESAIM Control Optim. Calculus Variations 1, 17–33 (1996).CrossRefMathSciNetMATH Santosa, F.: A level set approach for inverse problems involving obstacles. ESAIM Control Optim. Calculus Variations 1, 17–33 (1996).CrossRefMathSciNetMATH
388.
Zurück zum Zitat Schormann, C.: Analytische und numerische Untersuchungen bei inversen Transmissionsproblemen zur zeitharmonischen Wellengleichung. Dissertation, Göttingen 2000. Schormann, C.: Analytische und numerische Untersuchungen bei inversen Transmissionsproblemen zur zeitharmonischen Wellengleichung. Dissertation, Göttingen 2000.
391.
392.
396.
Zurück zum Zitat Sokolowski, J., and Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim., 37, 1251–1272 (1999).CrossRefMathSciNetMATH Sokolowski, J., and Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim., 37, 1251–1272 (1999).CrossRefMathSciNetMATH
398.
Zurück zum Zitat Stefanov, P., and Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Amer. Math. Soc. 132, 1351–1354 (2003).CrossRefMathSciNetMATH Stefanov, P., and Uhlmann, G.: Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Amer. Math. Soc. 132, 1351–1354 (2003).CrossRefMathSciNetMATH
409.
Zurück zum Zitat Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York 1975.MATH Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York 1975.MATH
433.
Zurück zum Zitat Zinn, A.: On an optimisation method for the full- and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5, 239–253 (1989).CrossRefMathSciNetMATH Zinn, A.: On an optimisation method for the full- and limited-aperture problem in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5, 239–253 (1989).CrossRefMathSciNetMATH
Metadaten
Titel
Inverse Acoustic Obstacle Scattering
verfasst von
David Colton
Rainer Kress
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-30351-8_5