Skip to main content

2019 | OriginalPaper | Buchkapitel

11. Inverse Heat Conduction Problems in Welding

verfasst von : Victor A. Karkhin

Erschienen in: Thermal Processes in Welding

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapters, we addressed a direct heat conduction problem: the heat conduction problem is solved with allowance for input data (parameters of the welding heat source, body geometry and material properties). As a result, temperature field and all its characteristics are obtained. This procedure can be presented in a schematic form: independent input parameters p1, p2, …, pK of vector p are given, and a dependent vector (response function) T is obtained with the following parameters (output data): T1, T2, …, TJ.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alifanov, O. M. (1994). Inverse heat transfer problems (348 pp.). Berlin: Springer. Alifanov, O. M. (1994). Inverse heat transfer problems (348 pp.). Berlin: Springer.
Zurück zum Zitat Attetkov, A. V., Galkin, S. V., & Zarubin, V. S. (2001). Methods of optimisation (440 pp.). Moscow: Moscow State Technical University Publishing (in Russian). Attetkov, A. V., Galkin, S. V., & Zarubin, V. S. (2001). Methods of optimisation (440 pp.). Moscow: Moscow State Technical University Publishing (in Russian).
Zurück zum Zitat Beck, J. V. (1991). Inverse problems in heat transfer with application to solidification and welding. In Modelling of casting, welding and advanced solidification processes (Vol. V, pp. 503–515). Warrendale, PA: TMS. Beck, J. V. (1991). Inverse problems in heat transfer with application to solidification and welding. In Modelling of casting, welding and advanced solidification processes (Vol. V, pp. 503–515). Warrendale, PA: TMS.
Zurück zum Zitat Beck, J. V., Blackwell, B., & St. Clair, C. R., Jr. (1985). Inverse heat conduction: Ill posed problems (308 pp.). Wiley-Interscience. Beck, J. V., Blackwell, B., & St. Clair, C. R., Jr. (1985). Inverse heat conduction: Ill posed problems (308 pp.). Wiley-Interscience.
Zurück zum Zitat De, A., & DebRoy, T. (2004). Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. Journal of Physics D: Applied Physics, 37, 140–150. De, A., & DebRoy, T. (2004). Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. Journal of Physics D: Applied Physics, 37, 140–150.
Zurück zum Zitat De, A., & DebRoy, T. (2005). Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters. Welding Journal, (7), 101-s–112-s. De, A., & DebRoy, T. (2005). Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of uncertain parameters. Welding Journal, (7), 101-s–112-s.
Zurück zum Zitat De Vuyst, T., D’Alvise, L., Simar, A., de Meester, B., & Pierret, S. (2004). Inverse analysis using a genetic algorithm for the finite element modelling of friction stir welding. In 5th International Friction Stir Welding Symposium, Metz, France, 14–16 September 2004 (16 pp.). De Vuyst, T., D’Alvise, L., Simar, A., de Meester, B., & Pierret, S. (2004). Inverse analysis using a genetic algorithm for the finite element modelling of friction stir welding. In 5th International Friction Stir Welding Symposium, Metz, France, 14–16 September 2004 (16 pp.).
Zurück zum Zitat Fonda, R. W., & Lambrakos, S. G. (2002). Analysis of friction stir weld using an inverse problem approach. Science and Technology of Welding and Joining, 7(3), 177–181. Fonda, R. W., & Lambrakos, S. G. (2002). Analysis of friction stir weld using an inverse problem approach. Science and Technology of Welding and Joining, 7(3), 177–181.
Zurück zum Zitat Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz. Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Gill, P. E. (1984). Practical optimization (401 pp.). London: Academic Press. Gill, P. E. (1984). Practical optimization (401 pp.). London: Academic Press.
Zurück zum Zitat Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., & Karimi J. (2013a). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application, 18–21 September 2013, (pp. 38–45). St. Petersburg, Russia: St. Petersburg Polytechnic University Publishing. Karkhin, V. A., Homich, P. N., Ivanov, S. Yu., & Karimi J. (2013a). Prediction of microstructure and mechanical properties of weld metal in hybrid laser-arc welding. In Proceedings of the 7th International Scientific and Technical Conference on Beam Technologies and Laser Application, 18–21 September 2013, (pp. 38–45). St. Petersburg, Russia: St. Petersburg Polytechnic University Publishing.
Zurück zum Zitat Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27). Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27).
Zurück zum Zitat Karkhin, V. A., Il’in, A. S., & Ploshikhin, V. V. (2003c). Solving an inverse problem of heat conductivity, taking the heat of melting and solidification into account. Welding International, 17(12), 971–974. Karkhin, V. A., Il’in, A. S., & Ploshikhin, V. V. (2003c). Solving an inverse problem of heat conductivity, taking the heat of melting and solidification into account. Welding International, 17(12), 971–974.
Zurück zum Zitat Karkhin, V. A., Ilin, A. S., & Ploshikhin, V. V. (2003a). Inverse modelling of deep penetration welding. In IIW Doc. XII-1738-03 (9 pp.). Karkhin, V. A., Ilin, A. S., & Ploshikhin, V. V. (2003a). Inverse modelling of deep penetration welding. In IIW Doc. XII-1738-03 (9 pp.).
Zurück zum Zitat Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Bergmann, H. W. (2001a). Inverse modelling of the heat input distribution during deep penetration laser and electron beam welding. In F. O. Olsen & J. K. Kristensen (Eds.), Proceedings of 8th Conference on Laser Materials Processing in the Nordic Countries, Copenhagen, 13–15 August 2001 (pp. 289–300). Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Bergmann, H. W. (2001a). Inverse modelling of the heat input distribution during deep penetration laser and electron beam welding. In F. O. Olsen & J. K. Kristensen (Eds.), Proceedings of 8th Conference on Laser Materials Processing in the Nordic Countries, Copenhagen, 13–15 August 2001 (pp. 289–300).
Zurück zum Zitat Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2003b). Effect of latent heat on thermal efficiency of base metal fusing. In IIW Doc. XII-1739-03 (10 pp.). Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2003b). Effect of latent heat on thermal efficiency of base metal fusing. In IIW Doc. XII-1739-03 (10 pp.).
Zurück zum Zitat Karkhin, V. A., Ilyin, A. S., Plochikhine, V. V., & Bergmann, H. W. (2001c). Solution of inverse heat conduction problem for determining heat input distributions during laser and electron beam welding. In Proceedings of 3rd All-Russian Conference on Computer Technologies in Joining of Materials, Tula (pp. 119–127) (in Russian). Karkhin, V. A., Ilyin, A. S., Plochikhine, V. V., & Bergmann, H. W. (2001c). Solution of inverse heat conduction problem for determining heat input distributions during laser and electron beam welding. In Proceedings of 3rd All-Russian Conference on Computer Technologies in Joining of Materials, Tula (pp. 119–127) (in Russian).
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166). Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166).
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., Michailov, V. G., & Ivanov, S. Yu. (2015). Solution of inverse heat conduction problem in fusion welding. Welding and Diagnostics, (3), 20–23 (in Russian). Karkhin, V. A., Khomich, P. N., Michailov, V. G., & Ivanov, S. Yu. (2015). Solution of inverse heat conduction problem in fusion welding. Welding and Diagnostics, (3), 20–23 (in Russian).
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007e). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395. Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007e). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395.
Zurück zum Zitat Karkhin, V. A., & Levchenko, A. M. (2008). Computer-aided determination of diffusible hydrogen in deposited weld metal. Welding in the World, 52(3/4), 3–11. Karkhin, V. A., & Levchenko, A. M. (2008). Computer-aided determination of diffusible hydrogen in deposited weld metal. Welding in the World, 52(3/4), 3–11.
Zurück zum Zitat Karkhin, V. A., Levchenko, A. M., & Homich, P. N. (2009). Express determination of diffusible hydrogen in deposited weld metal. In Proceedings of St. Petersburg State Polytechnic University, “Materials and Chemical Technologies” (Vol. 510, pp. 180–192). St. Petersburg: St. Petersburg State Polytechnic University Publishing (in Russian). Karkhin, V. A., Levchenko, A. M., & Homich, P. N. (2009). Express determination of diffusible hydrogen in deposited weld metal. In Proceedings of St. Petersburg State Polytechnic University, “Materials and Chemical Technologies” (Vol. 510, pp. 180–192). St. Petersburg: St. Petersburg State Polytechnic University Publishing (in Russian).
Zurück zum Zitat Karkhin, V. A., Levchenko, A. M., & Khomich, P. N. (2007d). A method for the rapid determination of the concentration of diffusible hydrogen in deposited metal. Welding International, 21(6), 466–470. Karkhin, V. A., Levchenko, A. M., & Khomich, P. N. (2007d). A method for the rapid determination of the concentration of diffusible hydrogen in deposited metal. Welding International, 21(6), 466–470.
Zurück zum Zitat Karkhin, V. A., Levchenko, A. M., Khomich, P. N., & Michailov, V. G. (2007c). Computer-aided determination of diffusible hydrogen in deposited weld metal. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 785–798). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Levchenko, A. M., Khomich, P. N., & Michailov, V. G. (2007c). Computer-aided determination of diffusible hydrogen in deposited weld metal. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 785–798). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes”, Crimea, 25–28 May 2010 (pp. 56–60). Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes”, Crimea, 25–28 May 2010 (pp. 56–60).
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2001b). Reconstruction of the heat distribution in the molten pool during laser beam welding. In Lasers in Manufacturing. Proceedings of the 1st International WLT-Conference on Lasers in Manufacturing, Munich, June 2001 (pp. 269–272). Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2001b). Reconstruction of the heat distribution in the molten pool during laser beam welding. In Lasers in Manufacturing. Proceedings of the 1st International WLT-Conference on Lasers in Manufacturing, Munich, June 2001 (pp. 269–272).
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2002a). Solution of inverse heat conduction problem for determining heat input, weld shape, and grain structure during laser welding. Science and Technology of Welding and Joining, 7(4), 224–231. Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2002a). Solution of inverse heat conduction problem for determining heat input, weld shape, and grain structure during laser welding. Science and Technology of Welding and Joining, 7(4), 224–231.
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2002c). Simulation of thermal and solidification processes in laser welding of aluminium plates. The Paton Welding Journal, 54(8), 10–14. Karkhin, V. A., Plochikhine, V. V., & Bergmann, H. W. (2002c). Simulation of thermal and solidification processes in laser welding of aluminium plates. The Paton Welding Journal, 54(8), 10–14.
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., & Ilyin, A. S. (2002d). Inverse computer modelling of thermal processes during welding. In Proceedings of 3rd International Conference “Computer Modelling 2002”, 6–8 June 2002, St. Petersburg (pp. 54–59). St. Petersburg: St. Petersburg State Polytechnic University Publishing (in Russian). Karkhin, V. A., Plochikhine, V. V., & Ilyin, A. S. (2002d). Inverse computer modelling of thermal processes during welding. In Proceedings of 3rd International Conference “Computer Modelling 2002”, 6–8 June 2002, St. Petersburg (pp. 54–59). St. Petersburg: St. Petersburg State Polytechnic University Publishing (in Russian).
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., Ilyin, A. S., & Bergmann, H. W. (2002b). Inverse modelling of fusion welding processes. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 6, pp. 1017–1042). London: Maney Publishing. Karkhin, V. A., Plochikhine, V. V., Ilyin, A. S., & Bergmann, H. W. (2002b). Inverse modelling of fusion welding processes. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 6, pp. 1017–1042). London: Maney Publishing.
Zurück zum Zitat Karkhin, V. A., Plochikhine, V. V., Ilyin, A. S., & Bergmann, H. W. (2002e) Inverse modelling of fusion welding processes. Welding in the World, 46(11/12), 2–13. Karkhin, V. A., Plochikhine, V. V., Ilyin, A. S., & Bergmann, H. W. (2002e) Inverse modelling of fusion welding processes. Welding in the World, 46(11/12), 2–13.
Zurück zum Zitat Kim, C.-H., Zhang, W., & DebRoy, T. (2003). Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding. Journal of Applied Physics, 94(4), 2667–2679. Kim, C.-H., Zhang, W., & DebRoy, T. (2003). Modeling of temperature field and solidified surface profile during gas-metal arc fillet welding. Journal of Applied Physics, 94(4), 2667–2679.
Zurück zum Zitat Kumar, A., & DebRoy, T. (2007). Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions. Metallurgical and Materials Transactions A, 38(3), 506–519. Kumar, A., & DebRoy, T. (2007). Heat transfer and fluid flow during gas-metal-arc fillet welding for various joint configurations and welding positions. Metallurgical and Materials Transactions A, 38(3), 506–519.
Zurück zum Zitat Kumar, A., Zhang, W., Kim, C.-H., & DebRoy, T. (2005). A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 3–37). Graz: Verlag der Technischen Universitaet Graz. Kumar, A., Zhang, W., Kim, C.-H., & DebRoy, T. (2005). A smart bi-directional model of heat transfer and free surface flow in gas metal arc fillet welding for practicing engineers. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 3–37). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Kurpisz, K., & Nowak, A. J. (1995). Inverse thermal problems (258 pp.). Southampton: Computational Mechanics Publications. Kurpisz, K., & Nowak, A. J. (1995). Inverse thermal problems (258 pp.). Southampton: Computational Mechanics Publications.
Zurück zum Zitat Lambrakos, S. G., & Michopoulos, J. G. (2007). Algorithms for inverse analysis of heat deposition processes. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 847–879). Graz: Verlag der Technischen Universitaet Graz. Lambrakos, S. G., & Michopoulos, J. G. (2007). Algorithms for inverse analysis of heat deposition processes. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 847–879). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Lambrakos, S. G., & Milewski, J. O. (2010). Analysis of welding and heat deposition processes using an inverse-problem approach. In H. Cerjak, & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 1025–1056). Graz: Verlag der Technischen Universitaet Graz. Lambrakos, S. G., & Milewski, J. O. (2010). Analysis of welding and heat deposition processes using an inverse-problem approach. In H. Cerjak, & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 1025–1056). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Lopera, J., Mucic, K., Fuchs, F., & Enzinger, N. (2013). Linear friction welding of high strength chains: Modelling and validation. In C. Sommitsch, & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 203–218). Graz: Verlag der Technischen Universitaet Graz. Lopera, J., Mucic, K., Fuchs, F., & Enzinger, N. (2013). Linear friction welding of high strength chains: Modelling and validation. In C. Sommitsch, & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 10, pp. 203–218). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Maalekian, M., Kozeschnik, E., Brantner, H. P., & Cerjak, H. (2007). Inverse modelling of heat generation in friction welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 881–890). Graz: Verlag der Technischen Universitaet Graz. Maalekian, M., Kozeschnik, E., Brantner, H. P., & Cerjak, H. (2007). Inverse modelling of heat generation in friction welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 881–890). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Moiseyev, N. N., Ivanov Y. P., & Stolyarova, E. M. (1978). Optimisation methods (352 pp.). Moscow: Nauka (in Russian). Moiseyev, N. N., Ivanov Y. P., & Stolyarova, E. M. (1978). Optimisation methods (352 pp.). Moscow: Nauka (in Russian).
Zurück zum Zitat Ossenbrink, R., Brand, M., Michailov, V., Wiebe, J., & Wohlfahrt, H. (2003). Numerische Simulation der Eigenspannungen und des Umwandlungsver haltens. In DVS Berichte (Vol. 225, pp. 279–283). Duesseldorf: DVS – Verlag (in German). Ossenbrink, R., Brand, M., Michailov, V., Wiebe, J., & Wohlfahrt, H. (2003). Numerische Simulation der Eigenspannungen und des Umwandlungsver haltens. In DVS Berichte (Vol. 225, pp. 279–283). Duesseldorf: DVS – Verlag (in German).
Zurück zum Zitat Panteleyev, A. V., & Letova, T. A. (2002). Optimisation methods in examples and problems (544 pp.). Moscow: Vysshaya Shkola (in Russian). Panteleyev, A. V., & Letova, T. A. (2002). Optimisation methods in examples and problems (544 pp.). Moscow: Vysshaya Shkola (in Russian).
Zurück zum Zitat Pittner, A. (2012). A contribution to the solution of the inverse heat conduction problem in welding simulation (201 pp.). Berlin: BAM-Dissertationsreihe, Band 85. Pittner, A. (2012). A contribution to the solution of the inverse heat conduction problem in welding simulation (201 pp.). Berlin: BAM-Dissertationsreihe, Band 85.
Zurück zum Zitat Pittner, A., Karkhin, V., & Rethmeier, M. (2015). Reconstruction of 3D transient temperature fields for fusion welding processes on basis of discrete experimental data. Welding in the World, 59(4), 497–512. Pittner, A., Karkhin, V., & Rethmeier, M. (2015). Reconstruction of 3D transient temperature fields for fusion welding processes on basis of discrete experimental data. Welding in the World, 59(4), 497–512.
Zurück zum Zitat Pittner, A., Schwenk, C., Weiss, D., & Rethmeier, M. (2010). An efficient solution of the inverse heat conduction problem for welding simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 761–791). Graz: Verlag der Technischen Universitaet Graz. Pittner, A., Schwenk, C., Weiss, D., & Rethmeier, M. (2010). An efficient solution of the inverse heat conduction problem for welding simulation. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 761–791). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS-Verlag. Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS-Verlag.
Zurück zum Zitat Rajamaki, P., Karkhin, V. A., & Khomich, P. N. (2007). Determination of the main characteristics of the temperature field for the evaluation of the type of solidification of weld metal in fusion welding. Welding International, 21(8), 600–604. Rajamaki, P., Karkhin, V. A., & Khomich, P. N. (2007). Determination of the main characteristics of the temperature field for the evaluation of the type of solidification of weld metal in fusion welding. Welding International, 21(8), 600–604.
Zurück zum Zitat Tikhonov, A. N., & Arsenin, A. Ya. (1977). Solutions of ill-posed problems (258 pp.). Winston. Tikhonov, A. N., & Arsenin, A. Ya. (1977). Solutions of ill-posed problems (258 pp.). Winston.
Zurück zum Zitat Tikhonov, A. N., Kalner, V. D., & Glasko, V. B. (1990). Mathematical modelling of technological processes and inverse problems in mechanical engineering (264 pp.). Moscow: Mashinostroienie (in Russian). Tikhonov, A. N., Kalner, V. D., & Glasko, V. B. (1990). Mathematical modelling of technological processes and inverse problems in mechanical engineering (264 pp.). Moscow: Mashinostroienie (in Russian).
Zurück zum Zitat Vanderplaats, G. N. (1984). Numerical optimization techniques for engineering design (333 pp.). New York: Hill Publishing Company. Vanderplaats, G. N. (1984). Numerical optimization techniques for engineering design (333 pp.). New York: Hill Publishing Company.
Zurück zum Zitat Zabaras, N. (1991). Inverse modeling of solidification and welding processes. In Modeling of casting, welding and advanced solidification processes (Vol. 5, pp. 523–530). Zabaras, N. (1991). Inverse modeling of solidification and welding processes. In Modeling of casting, welding and advanced solidification processes (Vol. 5, pp. 523–530).
Zurück zum Zitat Zervaki, A. D., Haidemenopoulos, G. N., & Lambrakos, S. G. (2007). Analysis of heat affected zone using direct and inverse modelling in 6XXX aluminium alloys. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 907–923). Graz: Verlag der Technischen Universitaet Graz. Zervaki, A. D., Haidemenopoulos, G. N., & Lambrakos, S. G. (2007). Analysis of heat affected zone using direct and inverse modelling in 6XXX aluminium alloys. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 907–923). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Zhang, W., Kim, C. H., & DebRoy, T. (2004). Heat and fluid flow in complex joints during gas metal arc welding—Part 1: Numerical model of fillet welding. Journal of Applied Physics, 95, 5210–5219. Zhang, W., Kim, C. H., & DebRoy, T. (2004). Heat and fluid flow in complex joints during gas metal arc welding—Part 1: Numerical model of fillet welding. Journal of Applied Physics, 95, 5210–5219.
Metadaten
Titel
Inverse Heat Conduction Problems in Welding
verfasst von
Victor A. Karkhin
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.