Skip to main content

2024 | OriginalPaper | Buchkapitel

3. Inverse Problems of Fractional Diffusion Equations

verfasst von : Yong Zhou

Erschienen in: Fractional Diffusion and Wave Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the inverse problems of time fractional diffusion equations of order \(\alpha \in (0,1)\). In Sect. 3.1, we study a backward problem for an inhomogeneous fractional diffusion equation in a bounded domain. By applying the properties of the Mittag-Leffler functions and the method of eigenvalue expansion, we establish some results about the existence, uniqueness, and regularity of the mild solutions and the classical solutions of the proposed problem in a weighted Hölder continuous function space. In Sect. 3.2, we consider a final value problem for a diffusion equation with time-space fractional differentiation on a bounded domain D of \( \mathbb {R}^{k}\), \(k\ge 1\), which includes the fractional power \(\mathscr {L}^\beta \), \(0<\beta \leq 1\), of a symmetric uniformly elliptic operator \(\mathscr {L}\) defined on \(L^2(D)\). A representation of solutions is given by using the Laplace transform and the spectrum of \(\mathscr {L}^\beta \). We present some existence and regularity results for our problem in both the linear and nonlinear cases. The materials in Sect. 3.1 are adopted from Zhou, He, Ahmad, and Tuan [245]. The contents in Sect. 3.2 are due to Tuan, Ngoc, Zhou, and O’Regan [210].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series (Courier Corporation, Washington, D.C., 1967) M. Abramowitz, I.A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series (Courier Corporation, Washington, D.C., 1967)
5.
Zurück zum Zitat B. Ahmad, M.S. Alhothuali, H.H. Alsulami, M. Kirane, S. Timoshin, On a time fractional reaction diffusion equation. Appl. Math. Comput. 257, 199–204 (2015)MathSciNet B. Ahmad, M.S. Alhothuali, H.H. Alsulami, M. Kirane, S. Timoshin, On a time fractional reaction diffusion equation. Appl. Math. Comput. 257, 199–204 (2015)MathSciNet
7.
Zurück zum Zitat M. Ali, S.A. Malik, An inverse problem for a family of time fractional diffusion equations. Inverse Probl. Sci. Eng. 25(9), 1299–1322 (2017)MathSciNetCrossRef M. Ali, S.A. Malik, An inverse problem for a family of time fractional diffusion equations. Inverse Probl. Sci. Eng. 25(9), 1299–1322 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)MathSciNetCrossRef E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat B.D. Andrade, A. Viana, On a fractional reaction-diffusion equation. Z. Angew. Math. Phys. 68(3), 59 (2017) B.D. Andrade, A. Viana, On a fractional reaction-diffusion equation. Z. Angew. Math. Phys. 68(3), 59 (2017)
15.
Zurück zum Zitat V.V. Au, M. Kirane, N.H. Tuan, Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete Contin. Dyn. Syst. 39(2), 771–801 (2019)MathSciNetCrossRef V.V. Au, M. Kirane, N.H. Tuan, Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete Contin. Dyn. Syst. 39(2), 771–801 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Res. Res. 38, 9–1-9-12 (2002) B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations. Water Res. Res. 38, 9–1-9-12 (2002)
22.
Zurück zum Zitat M. Bonforte, Y. Sire, J.L. Vazquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)MathSciNetCrossRef M. Bonforte, Y. Sire, J.L. Vazquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)MathSciNetCrossRef
23.
Zurück zum Zitat M. Bonforte, J.L. Vazquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)MathSciNetCrossRef M. Bonforte, J.L. Vazquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)MathSciNetCrossRef
24.
Zurück zum Zitat V. Bögelein, F. Duzaar, P. Marcellini, S. Signoriello, Nonlocal diffusion equations. J. Math. Anal. Appl. 432(1), 398–428 (2015)MathSciNetCrossRef V. Bögelein, F. Duzaar, P. Marcellini, S. Signoriello, Nonlocal diffusion equations. J. Math. Anal. Appl. 432(1), 398–428 (2015)MathSciNetCrossRef
25.
Zurück zum Zitat V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229(2), 503–545 (2018)MathSciNetCrossRef V. Bögelein, F. Duzaar, P. Marcellini, C. Scheven, Doubly nonlinear equations of porous medium type. Arch. Ration. Mech. Anal. 229(2), 503–545 (2018)MathSciNetCrossRef
37.
Zurück zum Zitat Y. Chen, H. Gao, M. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Discrete Contin. Dyn. Syst. 34, 79–98 (2014)MathSciNetCrossRef Y. Chen, H. Gao, M. Garrido-Atienza, B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems. Discrete Contin. Dyn. Syst. 34, 79–98 (2014)MathSciNetCrossRef
41.
Zurück zum Zitat Ph. Clément, S.O. Londen, G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces. J. Differ. Equ. 196, 418–447 (2004)MathSciNetCrossRef Ph. Clément, S.O. Londen, G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces. J. Differ. Equ. 196, 418–447 (2004)MathSciNetCrossRef
43.
Zurück zum Zitat D.T. Dang, E. Nane, D.M. Nguyen, N.H. Tuan, Continuity of solutions of a class of fractional equations. Potential Anal. 49, 423–478 (2018)MathSciNetCrossRef D.T. Dang, E. Nane, D.M. Nguyen, N.H. Tuan, Continuity of solutions of a class of fractional equations. Potential Anal. 49, 423–478 (2018)MathSciNetCrossRef
46.
Zurück zum Zitat B. de Andrade, A.N. Carvalho, P.M. Carvalho-Neto, P. Marin-Rubio, Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topol. Methods Nonlinear Anal. 45, 439–467 (2015)MathSciNetCrossRef B. de Andrade, A.N. Carvalho, P.M. Carvalho-Neto, P. Marin-Rubio, Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topol. Methods Nonlinear Anal. 45, 439–467 (2015)MathSciNetCrossRef
49.
Zurück zum Zitat D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence Phys. Plasmas 11(8), 3854–3864 (2004)CrossRef D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence Phys. Plasmas 11(8), 3854–3864 (2004)CrossRef
50.
Zurück zum Zitat D. del-Castillo-Negrete, B.A. Carreras, V.E. Lynch, Nondiffusive transport in plasma turbulene: a fractional diffusion approach. Phys. Rev. Lett. 94, 065003 (2005) D. del-Castillo-Negrete, B.A. Carreras, V.E. Lynch, Nondiffusive transport in plasma turbulene: a fractional diffusion approach. Phys. Rev. Lett. 94, 065003 (2005)
52.
Zurück zum Zitat K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer Science and Business Media, Berlin, 2010)CrossRef K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer Science and Business Media, Berlin, 2010)CrossRef
55.
Zurück zum Zitat H. Dong, D. Kim, Lp-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)MathSciNetCrossRef H. Dong, D. Kim, Lp-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)MathSciNetCrossRef
57.
Zurück zum Zitat F. Duzaar, J. Habermann, Partial regularity for parabolic systems with non-standard growth. J. Evol. Equ. 12(1), 203–244 (2012)MathSciNetCrossRef F. Duzaar, J. Habermann, Partial regularity for parabolic systems with non-standard growth. J. Evol. Equ. 12(1), 203–244 (2012)MathSciNetCrossRef
66.
Zurück zum Zitat C.G. Gal, M. Warma, Fractional in time semilinear parabolic equations and applications. HAL Id: hal-01578788 (2017) C.G. Gal, M. Warma, Fractional in time semilinear parabolic equations and applications. HAL Id: hal-01578788 (2017)
69.
Zurück zum Zitat Y. Giga, T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo’s time fractional derivative. Comm. Partial Differ. Equ. 42(7), 1088–1120 (2017)MathSciNetCrossRef Y. Giga, T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo’s time fractional derivative. Comm. Partial Differ. Equ. 42(7), 1088–1120 (2017)MathSciNetCrossRef
77.
Zurück zum Zitat B.H. Guswanto, T. Suzuki, Existence and uniqueness of mild solutions for fractional semilinear differential equations. Electron. J. Differ. Equ. 2015, 1–16 (2015)MathSciNet B.H. Guswanto, T. Suzuki, Existence and uniqueness of mild solutions for fractional semilinear differential equations. Electron. J. Differ. Equ. 2015, 1–16 (2015)MathSciNet
80.
Zurück zum Zitat D.N. Hao, N.V. Duc, N.V. Thang, Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source. Inverse Probl. 34, 33 (2018)MathSciNet D.N. Hao, N.V. Duc, N.V. Thang, Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source. Inverse Probl. 34, 33 (2018)MathSciNet
89.
Zurück zum Zitat N.Q. Hung, J.L. Vazquez, Porous medium equation with nonlocal pressure in a bounded domain. Comm. Partial Differ. Equ. 43(10), 1502–1539 (2018)MathSciNetCrossRef N.Q. Hung, J.L. Vazquez, Porous medium equation with nonlocal pressure in a bounded domain. Comm. Partial Differ. Equ. 43(10), 1502–1539 (2018)MathSciNetCrossRef
97.
Zurück zum Zitat J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 34(2), 025007(2018) J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 34(2), 025007(2018)
98.
Zurück zum Zitat J. Janno, K. Kasemets, Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Probl. Imag. 11, 125–149 (2017)MathSciNetCrossRef J. Janno, K. Kasemets, Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Probl. Imag. 11, 125–149 (2017)MathSciNetCrossRef
101.
Zurück zum Zitat J. Jia, J. Peng, J. Gao, Y. Li, Backward problem for a time-space fractional diffusion equation. Inverse Probl. Imag. 12(3), 773–800 (2018)MathSciNetCrossRef J. Jia, J. Peng, J. Gao, Y. Li, Backward problem for a time-space fractional diffusion equation. Inverse Probl. Imag. 12(3), 773–800 (2018)MathSciNetCrossRef
102.
Zurück zum Zitat D. Jiang, Z. Li, Y. Liu, M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Probl. 33, 21 (2017)MathSciNetCrossRef D. Jiang, Z. Li, Y. Liu, M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Probl. 33, 21 (2017)MathSciNetCrossRef
104.
Zurück zum Zitat B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRef B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRef
106.
Zurück zum Zitat B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)MathSciNetCrossRef B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)MathSciNetCrossRef
107.
Zurück zum Zitat B. Kaltenbacher, W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Probl. 35(6), 065004 (2019) B. Kaltenbacher, W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Probl. 35(6), 065004 (2019)
108.
Zurück zum Zitat B. Kaltenbacher, W. Rundell, Regularization of a backward parabolic equation by fractional operators. Inverse Probl. Imag. 13(2), 401–430 (2019)MathSciNetCrossRef B. Kaltenbacher, W. Rundell, Regularization of a backward parabolic equation by fractional operators. Inverse Probl. Imag. 13(2), 401–430 (2019)MathSciNetCrossRef
112.
Zurück zum Zitat Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)MathSciNetCrossRef Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)MathSciNetCrossRef
114.
Zurück zum Zitat Y. Kian, L. Oksanen, E. Soccorsi, M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ. Equ. 264, 1146–1170 (2018)MathSciNetCrossRef Y. Kian, L. Oksanen, E. Soccorsi, M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ. Equ. 264, 1146–1170 (2018)MathSciNetCrossRef
115.
Zurück zum Zitat A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006) A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006)
116.
Zurück zum Zitat I. Kim, K.H. Kim, S. Lim, An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)MathSciNetCrossRef I. Kim, K.H. Kim, S. Lim, An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)MathSciNetCrossRef
117.
Zurück zum Zitat M. Kirane, B. Ahmad, A. Alsaedi, M. Al-Yami, Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 133(1), 235–248 (2014)MathSciNetCrossRef M. Kirane, B. Ahmad, A. Alsaedi, M. Al-Yami, Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 133(1), 235–248 (2014)MathSciNetCrossRef
122.
Zurück zum Zitat S. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)MathSciNetCrossRef S. Kou, Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2, 501–535 (2008)MathSciNetCrossRef
127.
Zurück zum Zitat G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 29(6), 065014 (2013) G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 29(6), 065014 (2013)
130.
Zurück zum Zitat Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32(1), 015004 (2015) Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32(1), 015004 (2015)
131.
Zurück zum Zitat Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)MathSciNet Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)MathSciNet
134.
Zurück zum Zitat Z. Li, Y. Kian, E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)MathSciNet Z. Li, Y. Kian, E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)MathSciNet
138.
Zurück zum Zitat J.J. Liu, M. Yamamoto, A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)MathSciNetCrossRef J.J. Liu, M. Yamamoto, A backward problem for the time-fractional diffusion equation. Appl. Anal. 89(11), 1769–1788 (2010)MathSciNetCrossRef
145.
Zurück zum Zitat Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Probl. 29(6), 065019 (2013) Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Probl. 29(6), 065019 (2013)
155.
Zurück zum Zitat F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)MathSciNet F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)MathSciNet
158.
166.
Zurück zum Zitat L. Miller, M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 29(7), 075013 (2013) L. Miller, M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 29(7), 075013 (2013)
168.
Zurück zum Zitat J. Mu, B. Ahmad, S. Huang, Existence and regularity of solutions to time-fractional diffusion equations. Comput. Math. Appl. 73(6), 985–996 (2017)MathSciNetCrossRef J. Mu, B. Ahmad, S. Huang, Existence and regularity of solutions to time-fractional diffusion equations. Comput. Math. Appl. 73(6), 985–996 (2017)MathSciNetCrossRef
171.
Zurück zum Zitat R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133, 425–430 (1986)CrossRef R.R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Stat. Sol. B 133, 425–430 (1986)CrossRef
172.
Zurück zum Zitat R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to space-time fractional wave problems. SIAM J. Numer. Anal. 54, 848–873 (2016)MathSciNetCrossRef R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to space-time fractional wave problems. SIAM J. Numer. Anal. 54, 848–873 (2016)MathSciNetCrossRef
174.
Zurück zum Zitat E. Otárola, A.J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)MathSciNetCrossRef E. Otárola, A.J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)MathSciNetCrossRef
180.
Zurück zum Zitat I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999) I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
183.
Zurück zum Zitat W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33(3), 035008 (2017) W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33(3), 035008 (2017)
184.
Zurück zum Zitat W. Rundell, Z. Zhang, Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys. 368, 299–314 (2018)MathSciNetCrossRef W. Rundell, Z. Zhang, Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys. 368, 299–314 (2018)MathSciNetCrossRef
186.
Zurück zum Zitat K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef
187.
Zurück zum Zitat S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach Science, London, 1987) S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach Science, London, 1987)
188.
Zurück zum Zitat K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef
190.
191.
Zurück zum Zitat K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phy. 119(4), 2165–2170 (2003)CrossRef K. Seki, M. Wojcik, M. Tachiya, Fractional reaction-diffusion equation. J. Chem. Phy. 119(4), 2165–2170 (2003)CrossRef
198.
Zurück zum Zitat D. Stan, F. del Teso, J.L. Vázquez, Existence of weak solutions for a general porous medium equation with nonlocal pressure. Arch. Ration. Mech. Anal. 233(1), 451–496 (2019)MathSciNetCrossRef D. Stan, F. del Teso, J.L. Vázquez, Existence of weak solutions for a general porous medium equation with nonlocal pressure. Arch. Ration. Mech. Anal. 233(1), 451–496 (2019)MathSciNetCrossRef
205.
Zurück zum Zitat M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equation. Comm. Partial Differ. Equ. 17, 1407–1456 (1992)MathSciNetCrossRef M. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes equation. Comm. Partial Differ. Equ. 17, 1407–1456 (1992)MathSciNetCrossRef
206.
Zurück zum Zitat N.H. Tuan, L.D. Long, N.V. Thinh, T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source. Inverse Probl. Sci. Eng. 25, 1367–1395 (2017)MathSciNetCrossRef N.H. Tuan, L.D. Long, N.V. Thinh, T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source. Inverse Probl. Sci. Eng. 25, 1367–1395 (2017)MathSciNetCrossRef
207.
Zurück zum Zitat N.H. Tuan, L.N. Huynh, T.B. Ngoc, Y. Zhou, On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 92, 76–84 (2019)MathSciNetCrossRef N.H. Tuan, L.N. Huynh, T.B. Ngoc, Y. Zhou, On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 92, 76–84 (2019)MathSciNetCrossRef
209.
Zurück zum Zitat N.H. Tuan, V.A. Khoa, V.V. Au, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 51, 60–85 (2019)MathSciNetCrossRef N.H. Tuan, V.A. Khoa, V.V. Au, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 51, 60–85 (2019)MathSciNetCrossRef
210.
Zurück zum Zitat N.H. Tuan, T.B. Ngoc, Y. Zhou, D. O’Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation. Inverse Probl. 36(5), 055011 (2020) N.H. Tuan, T.B. Ngoc, Y. Zhou, D. O’Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation. Inverse Probl. 36(5), 055011 (2020)
216.
Zurück zum Zitat A. Viana, A local theory for a fractional reaction-diffusion equation. Commun. Contemp. Math. 21(06), 1–26 (2019)MathSciNetCrossRef A. Viana, A local theory for a fractional reaction-diffusion equation. Commun. Contemp. Math. 21(06), 1–26 (2019)MathSciNetCrossRef
219.
Zurück zum Zitat V. Volpert, Elliptic Partial Differential Equations. Volume 2: Reaction-Diffusion Equations. vol. 104 (Springer, Berlin, 2014) V. Volpert, Elliptic Partial Differential Equations. Volume 2: Reaction-Diffusion Equations. vol. 104 (Springer, Berlin, 2014)
221.
Zurück zum Zitat W. Wang, M. Yamamoto, B. Han, Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation. Inverse Probl. 29(9), 095009 (2013) W. Wang, M. Yamamoto, B. Han, Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation. Inverse Probl. 29(9), 095009 (2013)
224.
Zurück zum Zitat T. Wei, J. Xian, Variational method for a backward problem for a time-fractional diffusion equation. ESAIM Math. Model. Numer. Anal. 53(4), 1223–1244 (2019)MathSciNetCrossRef T. Wei, J. Xian, Variational method for a backward problem for a time-fractional diffusion equation. ESAIM Math. Model. Numer. Anal. 53(4), 1223–1244 (2019)MathSciNetCrossRef
225.
Zurück zum Zitat T. Wei, J.G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM Math. Model. Numer. Anal. 48(2), 603–621 (2014)MathSciNetCrossRef T. Wei, J.G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM Math. Model. Numer. Anal. 48(2), 603–621 (2014)MathSciNetCrossRef
226.
Zurück zum Zitat T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75(10), 3632–3648 (2018)MathSciNetCrossRef T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75(10), 3632–3648 (2018)MathSciNetCrossRef
228.
Zurück zum Zitat J. Xian, T. Wei, Determination of the initial data in a time-fractional diffusion-wave problem by a final time data. Comput. Math. Appl. 78(8), 2525–2540 (2019)MathSciNetCrossRef J. Xian, T. Wei, Determination of the initial data in a time-fractional diffusion-wave problem by a final time data. Comput. Math. Appl. 78(8), 2525–2540 (2019)MathSciNetCrossRef
231.
Zurück zum Zitat A. Yagi, Abstract Parabolic Evolution Equations and Their Applications (Springer Science & Business Media, Berlin, 2009) A. Yagi, Abstract Parabolic Evolution Equations and Their Applications (Springer Science & Business Media, Berlin, 2009)
235.
243.
Zurück zum Zitat G.H. Zhou, Z.B. Guo, Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM J. Control Optim. 56, 75–10 (2018)MathSciNetCrossRef G.H. Zhou, Z.B. Guo, Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM J. Control Optim. 56, 75–10 (2018)MathSciNetCrossRef
244.
Zurück zum Zitat L. Zhou, H.M. Selim, Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Amer. J. 67(4), 1079–1084 (2003)CrossRef L. Zhou, H.M. Selim, Application of the fractional advection-dispersion equation in porous media. Soil Sci. Soc. Amer. J. 67(4), 1079–1084 (2003)CrossRef
245.
Zurück zum Zitat Y. Zhou, J.W. He, B. Ahmad, N.H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)MathSciNetCrossRef Y. Zhou, J.W. He, B. Ahmad, N.H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)MathSciNetCrossRef
Metadaten
Titel
Inverse Problems of Fractional Diffusion Equations
verfasst von
Yong Zhou
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-74031-2_3