Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Inverse Problems of Fractional Wave Equations

verfasst von : Yong Zhou

Erschienen in: Fractional Diffusion and Wave Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we firstly concern with a backward problem (or called initial inverse problem) for a nonlinear time fractional wave equation in a bounded domain. By applying the properties of Mittag–Leffler functions and the method of eigenfunction expansion, we establish some results about the existence and uniqueness of mild solutions of the proposed problem based on the compact technique. Due to the ill-posedness of backward problem in the sense of Hadamard, a general filter regularization method is utilized to approximate the solution, and further we prove the convergence rate for the regularized solutions. In Sect. 5.2, we consider the backward problem for an inhomogeneous time fractional wave equation in a general bounded domain. We show that the backward problem is ill-posed, and we propose a regularizing scheme by using a fractional Landweber regularization method. We also present error estimates between the regularized solution and the exact solution under two parameter choice rules. In Sect. 5.3, we consider the terminal value problem of determining the initial value, in a general class of time fractional wave equation with the Caputo derivative, from a given final value. We are concerned with the existence and regularity upon the terminal value data of the mild solution. Under some assumptions of the nonlinear source function, we address and show the well-posedness for the terminal value problem. Some regularity results for the mild solution and its derivatives of first and fractional orders are also derived. The effectiveness of our methods is shown by applying the results to two interesting models: time fractional Ginzburg–Landau equation and time fractional Burgers equation, where time and spatial regularity estimates are obtained. The contents of Sect. 5.1 are taken from He and Zhou (Proc R. Soc Edinburgh Sect A 152(6):1589–1612, 2022). The results in Sect. 5.2 are adopted from Huynh et al. (Appl Anal 100(4):860–878, 2021). Section 5.3 is from Tuan et al. (Nonlinearity 34(3):1448, 2021).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
  1. R.A. Adams, Sobolev Spaces (Academic, London, 1975)
  2. O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phy. A: Math. Theor. 40, 6287–6303 (2007)MathSciNetView Article
  3. E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)MathSciNetView Article
  4. J. Baumeister, Stable Solution of Inverse Problems (Springer, Berlin, 1986)
  5. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer Science & Business Media, Berlin, 2010)
  6. M.V. Burtsev, A.N. Zarubin, Inverse initial-boundary value problem for a fractional diffusion wave equation with a non-carleman shift. Differ. Equ. 44(3), 390–400 (2008)MathSciNetView Article
  7. A. Carasso, Error bounds in the final value problem for the heat equation. SIAM J. Math. Anal. 7, 195–199 (1976)MathSciNetView Article
  8. W. Chen, S. Holm, Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law. arXiv preprint math-ph/0303040 (2003)
  9. D. Chen, B. Hofmann, J. Zou, Regularization and convergence for ill-posed backward evolution equations in Banach spaces. J. Differ. Equ. 265, 3533–3566 (2018)MathSciNetView Article
  10. R. Courant, D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations (Wiley, New Jersey, 2008)
  11. D.T. Dang, E. Nane, D.M. Nguyen, N.H. Tuan, Continuity of solutions of a class of fractional equations. Potential Anal. 49, 423–478 (2018)MathSciNetView Article
  12. B. de Andrade, A.N. Carvalho, P.M. Carvalho-Neto, P. Marin-Rubio, Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topol. Methods Nonlinear Anal. 45, 439–467 (2015)MathSciNetView Article
  13. P.M. de Carvalho-Neto, P. Gabriela, Mild solutions to the time fractional Navier-Stokes equations in \(\mathbb {R}^N\). J. Differ. Equ. 259, 2948–2980 (2015)
  14. A. Deiveegan, J.J. Nieto, P. Prakash, Periasamy, The revised generalized Tikhonov method for the backward time-fractional diffusion equation. J. Appl. Math. Comput. 9(1), 45–56 (2019)
  15. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer Science and Business Media, Berlin, 2010)View Article
  16. H. Dong, D. Kim, \(L_p\)-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)
  17. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems (Springer Science and Business Media, Berlin, 1996)View Article
  18. W. Fan, F. Liu, X. Jiang, I. Turner, A novel unstructublack mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract. Calc. Appl. Anal. 20, 352–383 (2017)MathSciNetView Article
  19. J. Ginibre, G. Velo, The global Cauchy problem for nonlinear Klein-Gordon equation. Math. Z 189, 487–505 (1985)MathSciNetView Article
  20. M.G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical non-linearity. Ann. Math. 132, 485–509 (1990)MathSciNetView Article
  21. S. Guo, L. Mei, Y. Li, An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction-diffusion-wave equation. Comput. Math. Appl. 74, 2449–2465 (2017)MathSciNetView Article
  22. J.W. He, L. Peng, Approximate controllability for a class of fractional stochastic wave equations. Comput. Math. Appl. 78, 1463–1476 (2019)MathSciNetView Article
  23. M. E. Hochstenbach, L. Reichel, Fractional Tikhonov regularization for linear discrete ill-posed problems. BIT 51(1), 197–215 (2011)MathSciNetView Article
  24. J. Huang, G. Wang, J. Xiong, A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48(4), 2106–2117 (2009)MathSciNetView Article
  25. L.N. Huynh, Y. Zhou, D. O’Regan, N.H. Tuan, Fractional Landweber method for an initial inverse problem for time-fractional wave equations. Appl. Anal. 100(4), 860–878 (2021)MathSciNetView Article
  26. M.I. Ismailov, M. Çiçek, Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl. Math. Modell. 40(7–8), 4891–4899 (2016)MathSciNetView Article
  27. J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inverse Probl. 34(2), 025007(2018)
  28. J. Janno, K. Kasemets, Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Probl. Imag. 11, 125–149 (2017)MathSciNetView Article
  29. J. Jia, J. Peng, J. Gao, Y. Li, Backward problem for a time-space fractional diffusion equation. Inverse Probl. Imag. 12(3), 773–800 (2018)MathSciNetView Article
  30. D. Jiang, Z. Li, Y. Liu, M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Probl. 33, 21 (2017)MathSciNetView Article
  31. B. Kaltenbacher, W. Rundell, On an inverse potential problem for a fractional reaction-diffusion equation. Inverse Probl. 35(6), 065004 (2019)
  32. B. Kaltenbacher, W. Rundell, Regularization of a backward parabolic equation by fractional operators. Inverse Probl. Imag. 13 (2), 401–430 (2019)MathSciNetView Article
  33. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995)View Article
  34. Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)MathSciNetView Article
  35. Y. Kian, Z. Li, Y. Liu, M. Yamamoto, The uniqueness of inverse problems for a fractional equation with a single measurement. Math. Ann. 308(3), 1465–1495 (2021)MathSciNetView Article
  36. Y. Kian, L. Oksanen, E. Soccorsi, M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations. J. Differ. Equ. 264, 1146–1170 (2018)MathSciNetView Article
  37. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006)
  38. I. Kim, K.H. Kim, S. Lim, An \(L_q(L_ p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)
  39. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problem (Springer Science and Business Media, Berlin, 2011)View Article
  40. E. Klann, R. Ramlau, Regularization by fractional filter methods and data smoothing. Inverse Probl. 24(2), 025018 (2008)
  41. D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40, 5642–5653 (2017)MathSciNetView Article
  42. P.D. Lax, Functional Analysis (Wiley Interscience, New York, 2002)
  43. G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 29(6), 065014 (2013)
  44. L. Li, J.G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)MathSciNetView Article
  45. Z. Li, O.Y. Imanuvilov, M. Yamamoto, Uniqueness in inverse boundary value problems for fractional diffusion equations. Inverse Probl. 32(1), 015004 (2015)
  46. Y. Li, Y. Wang, W. Deng, Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 55(6), 3173–3202 (2017)MathSciNetView Article
  47. Z. Li, Y. Kian, E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)MathSciNet
  48. A.K. Louis, Inverse Und Schlecht Gestellte Probleme (Springer, Berlin, 2013)
  49. Y. Luchko, W. Rundell, M. Yamamoto, L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation. Inverse Probl. 29(6), 065019 (2013)
  50. A. Lopushansky, H. Lopushansk, Inverse source Cauchy problem for a time fractional diffusion-wave equation with distributions. Electron. J. Differ. Equ. 182, 1–14 (2017)MathSciNet
  51. N.H. Luc, L.N. Huynh, N.H. Tuan, On a backward problem for inhomogeneous time-fractional diffusion equations. Comput. Math. Appl. 78(5), 1317–1333 (2019)MathSciNetView Article
  52. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996)MathSciNetView Article
  53. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models (Imperial College Press, London, 2010)View Article
  54. F. Mainardi, P. Paradisi, Fractional diffusive waves. J. Comput. Acoust. 9, 1417–1436 (2001)MathSciNetView Article
  55. F. Mainardi, P. Paradisi, A model of diffusive waves in viscoelasticity based on fractional calculus, in Proceedings of the 36th IEEE Conference on Decision and Control, vol. 5 (1997), pp. 4961–4966
  56. W. McLean, W.C. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)
  57. L. Miller, M. Yamamoto, Coefficient inverse problem for a fractional diffusion equation. Inverse Probl. 29(7), 075013 (2013)
  58. S. Morigi, L. Reichel, F. Sgallari, Fractional Tikhonov regularization with a nonlinear penalty term. E J. Comput. Appl. Math. 324, 142–154 (2017)MathSciNetView Article
  59. M.T. Nair, Linear Operator Equation: Approximation and Regularization (World Scientific, Singapore, 2009)View Article
  60. R.H. Nochetto, E. Otárola, A.J. Salgado, A PDE approach to space-time fractional wave problems. SIAM J. Numer. Anal. 54, 848–873 (2016)MathSciNetView Article
  61. E. Otárola, A.J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)MathSciNetView Article
  62. L. Peng, Y. Huang, On nonlocal backward problems for fractional stochastic diffusion equations. Comput. Math. Appl. 78(5), 1450–1462 (2019)MathSciNetView Article
  63. I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
  64. W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33(3), 035008 (2017)
  65. W. Rundell, Z. Zhang, Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys. 368, 299–314 (2018)MathSciNetView Article
  66. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetView Article
  67. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach Science, London, 1987)
  68. K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetView Article
  69. J. Shatah, M. Struwe, Regularity results for nonlinear wave equations. Ann. of Math. 138, 503–518 (1993)MathSciNetView Article
  70. J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth. IMRN 7, 303–309 (1994)MathSciNetView Article
  71. R.E. Showalter, The final value problem for evolution equations. J. Math. Anal. Appl. 47, 563–572 (1974)MathSciNetView Article
  72. K. Siskova, M. Slodicka, Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–17 (2017)MathSciNetView Article
  73. N.H. Tuan, L.D. Long, N.V. Thinh, T. Tran, On a final value problem for the time-fractional diffusion equation with inhomogeneous source. Inverse Probl. Sci. Eng. 25, 1367–1395 (2017)MathSciNetView Article
  74. N.H. Tuan, L.N. Huynh, T.B. Ngoc, Y. Zhou, On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 92, 76–84 (2019)MathSciNetView Article
  75. N.H. Tuan, A. Debbouche, T.B. Ngoc, Existence and regularity of final value problems for time fractional wave equations. Comput. Math. Appl. 78(5), 1396–1414 (2019)MathSciNetView Article
  76. N.H. Tuan, V.A. Khoa, V.V. Au, Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 51, 60–85 (2019)MathSciNetView Article
  77. G.M. Vainikko, A.Y. Veretennikov, Iteration Procedures in Ill-Posed Problems (Nauka, Moscow, 1986)
  78. L. Wang, J. Liu, Total variation regularization for a backward time-fractional diffusion problem. Inverse Probl. 29(11), 115013 (2013)
  79. R.N. Wang, D.H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)MathSciNetView Article
  80. J.G. Wang, Y.B. Zhou, T. Wei, A posteriori regularization parameter choice rule for the quasiboundary value method for the backward time-fractional diffusion problem. Appl. Math. Lett. 26(7), 741–747 (2013)MathSciNetView Article
  81. T. Wei, J.G. Wang, A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM Math. Model. Numer. Anal. 48(2), 603–621 (2014)MathSciNetView Article
  82. T. Wei, Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain. Comput. Math. Appl. 75(10), 3632–3648 (2018)MathSciNetView Article
  83. X. Xiong, X. Xue, Z. Qian, A modified iterative regularization method for ill-posed problems. Appl. Numer. Math. 122, 108–128 (2017)MathSciNetView Article
  84. M. Yang, J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization. Appl. Numer. Math. 66, 45–58 (2013)MathSciNetView Article
  85. Y. Zhou, J.W. He, B. Ahmad, N.H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)MathSciNetView Article
Metadaten
Titel
Inverse Problems of Fractional Wave Equations
verfasst von
Yong Zhou
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-74031-2_5