Skip to main content

24.01.2025 | Body and Safety, Human Factors and Ergonomics

Investigating the Economical Classification of Driving Behavior Utilizing Dynamic Thresholds

verfasst von: Hai Zhao, Weiqi Zhou, Majun Fei, Chaofeng Pan, Dehua Shi

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research introduces a methodology for classifying the economic efficiency of driving behavior by employing dynamic thresholds and utilizing real-world vehicle operation data. Initially, the real-world vehicle data are divided into short trips based on the speed segments from two instances of vehicle stopping, and the traffic conditions during these trips are classified using the K-means clustering algorithm, thereby obtaining the traffic state for each short trip. Following this, characteristic variables are selected to represent the driving behavior characteristics of the drivers, and the eco-scores along with the feature variable values for all short trips are computed. Spearman correlation analysis is then used to identify feature variables that exhibit strong correlations with eco-scores, serving as economic evaluation indicators. Subsequently, dynamic thresholds for the evaluation indicators under varying traffic conditions are calculated, thereby establishing a method for classifying driving behavior based on these dynamic thresholds. The proposed method effectively eliminates the influence of traffic conditions on driving behavior, consequently yielding more objective classification outcomes. This study provides a solid theoretical foundation for developing personalized energy-saving driving strategies tailored to different driver types. In addition, it offers critical insights for the design of intelligent transportation systems, the development of advanced driver assistance systems, and the formulation of environmental policies. In practical applications, the dynamic threshold-based classification method for economic driving behavior can deliver real-time feedback to drivers, aiding in the optimization of driving behavior and further enhancing driving efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Al-Wreikat, Y., Serrano, C., & Sodré, J. R. (2021). Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Applied Energy, 297, 8.CrossRefMATH Al-Wreikat, Y., Serrano, C., & Sodré, J. R. (2021). Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving. Applied Energy, 297, 8.CrossRefMATH
Zurück zum Zitat Chen, C., Zhao, X. H., Yao, Y., Zhang, Y. L., Rong, J., & Liu, X. M. (2018). Driver’s eco-driving behavior evaluation modeling based on driving events. Journal of Advanced Transportation, 2018, 1–12.MATH Chen, C., Zhao, X. H., Yao, Y., Zhang, Y. L., Rong, J., & Liu, X. M. (2018). Driver’s eco-driving behavior evaluation modeling based on driving events. Journal of Advanced Transportation, 2018, 1–12.MATH
Zurück zum Zitat Chen, S. Y., Cheng, K., Yang, J. H., Zang, X. D., Luo, Q., & Li, J. H. (2023). Driving behavior risk measurement and cluster analysis driven by vehicle trajectory data. Appl Sci Basel, 13(9), 5675.CrossRefMATH Chen, S. Y., Cheng, K., Yang, J. H., Zang, X. D., Luo, Q., & Li, J. H. (2023). Driving behavior risk measurement and cluster analysis driven by vehicle trajectory data. Appl Sci Basel, 13(9), 5675.CrossRefMATH
Zurück zum Zitat Chen, S. W., Fang, C. Y., & Tien, C. T. (2013). Driving behaviour modelling system based on graph construction. Transp. Res. Pt. C-Emerg. Technol., 26, 314–330.CrossRefMATH Chen, S. W., Fang, C. Y., & Tien, C. T. (2013). Driving behaviour modelling system based on graph construction. Transp. Res. Pt. C-Emerg. Technol., 26, 314–330.CrossRefMATH
Zurück zum Zitat Chen, S. D., Xue, Q. W., Zhao, X. C., Xing, Y. Y., & Lu, J. J. (2021). Risky driving behavior recognition based on vehicle trajectory. Int J Environ Res and Public Health, 18(23), 14.CrossRefMATH Chen, S. D., Xue, Q. W., Zhao, X. C., Xing, Y. Y., & Lu, J. J. (2021). Risky driving behavior recognition based on vehicle trajectory. Int J Environ Res and Public Health, 18(23), 14.CrossRefMATH
Zurück zum Zitat Chung, Y. S. (2015). Seemingly irrational driving behavior model: The effect of habit strength and anticipated affective reactions. Accident Analysis Prevention, 82, 79–89.CrossRefMATH Chung, Y. S. (2015). Seemingly irrational driving behavior model: The effect of habit strength and anticipated affective reactions. Accident Analysis Prevention, 82, 79–89.CrossRefMATH
Zurück zum Zitat Duan, K., Yan, X. D., Ma, L., Hang, J. Y., & Li, X. M. (2022). A multistage analytic model of the longitudinal and lateral acceleration during lane changing in work zone areas with the aid of a driving simulator experiment. Transp. Lett., 14(1), 28–38.CrossRefMATH Duan, K., Yan, X. D., Ma, L., Hang, J. Y., & Li, X. M. (2022). A multistage analytic model of the longitudinal and lateral acceleration during lane changing in work zone areas with the aid of a driving simulator experiment. Transp. Lett., 14(1), 28–38.CrossRefMATH
Zurück zum Zitat Feng, F., Bao, S., Sayer, J. R., Flannagan, C., Manser, M., & Wunderlich, R. (2017). Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data. Accident Analysis Prevention, 104, 125–136.CrossRef Feng, F., Bao, S., Sayer, J. R., Flannagan, C., Manser, M., & Wunderlich, R. (2017). Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data. Accident Analysis Prevention, 104, 125–136.CrossRef
Zurück zum Zitat Günther, M., Kacperski, C., & Krems, J. F. (2020). Can electric vehicle drivers be persuaded to eco-drive? A field study of feedback, gamification and financial rewards in Germany. Energy Research & Social Science, 63, 9.CrossRefMATH Günther, M., Kacperski, C., & Krems, J. F. (2020). Can electric vehicle drivers be persuaded to eco-drive? A field study of feedback, gamification and financial rewards in Germany. Energy Research & Social Science, 63, 9.CrossRefMATH
Zurück zum Zitat Guo, Q. Y., Zhao, Z. G., Shen, P. H., Zhan, X. W., & Li, J. W. (2019). Adaptive optimal control based on driving style recognition for plug-in hybrid electric vehicle. Energy, 186, 13.CrossRefMATH Guo, Q. Y., Zhao, Z. G., Shen, P. H., Zhan, X. W., & Li, J. W. (2019). Adaptive optimal control based on driving style recognition for plug-in hybrid electric vehicle. Energy, 186, 13.CrossRefMATH
Zurück zum Zitat Huan, J., Cao, W. J., & Liu, X. Q. (2017). A dissolved oxygen prediction method based on K-means clustering and the ELM neural network: A case study of the Changdang lake. China. Applied Engineering Agriculture, 33(4), 461–469.CrossRefMATH Huan, J., Cao, W. J., & Liu, X. Q. (2017). A dissolved oxygen prediction method based on K-means clustering and the ELM neural network: A case study of the Changdang lake. China. Applied Engineering Agriculture, 33(4), 461–469.CrossRefMATH
Zurück zum Zitat Huzayyin, O. A., Salem, H., & Hassan, M. A. (2021). A representative urban driving cycle for passenger vehicles to estimate fuel consumption and emission rates under real-world driving conditions. Urban CLim., 36, 17.CrossRef Huzayyin, O. A., Salem, H., & Hassan, M. A. (2021). A representative urban driving cycle for passenger vehicles to estimate fuel consumption and emission rates under real-world driving conditions. Urban CLim., 36, 17.CrossRef
Zurück zum Zitat Lee, C. H., & Wu, C. H. (2019). Learning to recognize driving patterns for collectively characterizing electric vehicle driving behaviors. Int J Automotive Technol, 20(6), 1263–1276.CrossRefMATH Lee, C. H., & Wu, C. H. (2019). Learning to recognize driving patterns for collectively characterizing electric vehicle driving behaviors. Int J Automotive Technol, 20(6), 1263–1276.CrossRefMATH
Zurück zum Zitat Li, G. F., Lai, W. J., Sui, X. X., Li, X. H., Qu, X. D., Zhang, T. R., & Li, Y. Z. (2020). Influence of traffic congestion on driver behavior in post-congestion driving. Accident Analysis Prevention, 141, 10.CrossRefMATH Li, G. F., Lai, W. J., Sui, X. X., Li, X. H., Qu, X. D., Zhang, T. R., & Li, Y. Z. (2020). Influence of traffic congestion on driver behavior in post-congestion driving. Accident Analysis Prevention, 141, 10.CrossRefMATH
Zurück zum Zitat Liang, K. C., Zhao, Z. G., Li, W. C., Zhou, J. W., & Yan, D. S. (2023). Comprehensive identification of driving style based on vehicle’s driving cycle recognition. IEEE Transact Vehicular Technol, 72(1), 312–326.CrossRefMATH Liang, K. C., Zhao, Z. G., Li, W. C., Zhou, J. W., & Yan, D. S. (2023). Comprehensive identification of driving style based on vehicle’s driving cycle recognition. IEEE Transact Vehicular Technol, 72(1), 312–326.CrossRefMATH
Zurück zum Zitat Luo, L. X., Liu, M. H., Mei, J. H., Chen, Y., & Bi, L. Z. (2023). A visual-based approach for driver’s environment perception and quantification in different weather conditions. Appl. Sci. Basel, 13(22), 12176.CrossRefMATH Luo, L. X., Liu, M. H., Mei, J. H., Chen, Y., & Bi, L. Z. (2023). A visual-based approach for driver’s environment perception and quantification in different weather conditions. Appl. Sci. Basel, 13(22), 12176.CrossRefMATH
Zurück zum Zitat Ma, Y. F., Li, W. L., Tang, K., Zhang, Z. Y., & Chen, S. Y. (2021). Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry. Accident Analysis Prevention, 154, 12.CrossRef Ma, Y. F., Li, W. L., Tang, K., Zhang, Z. Y., & Chen, S. Y. (2021). Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry. Accident Analysis Prevention, 154, 12.CrossRef
Zurück zum Zitat Ma, Y., & Wang, J. M. (2022). Personalized driving behaviors and fuel economy over realistic commute traffic: Modeling, correlation, and prediction. IEEE Transact Vehicular Technol, 71(7), 7084–7094.CrossRefMATH Ma, Y., & Wang, J. M. (2022). Personalized driving behaviors and fuel economy over realistic commute traffic: Modeling, correlation, and prediction. IEEE Transact Vehicular Technol, 71(7), 7084–7094.CrossRefMATH
Zurück zum Zitat Oltedal, S., & Rundmo, T. (2006). The effects of personality and gender on risky driving behaviour and accident involvement. Safety Sci, 44(7), 621–628.CrossRef Oltedal, S., & Rundmo, T. (2006). The effects of personality and gender on risky driving behaviour and accident involvement. Safety Sci, 44(7), 621–628.CrossRef
Zurück zum Zitat Pauwelussen, J., & Feenstra, P. J. (2010). Driver behavior analysis during ACC activation and deactivation in a real traffic environment. IEEE Transact Intelligent Transportation Syst, 11(2), 329–338.CrossRefMATH Pauwelussen, J., & Feenstra, P. J. (2010). Driver behavior analysis during ACC activation and deactivation in a real traffic environment. IEEE Transact Intelligent Transportation Syst, 11(2), 329–338.CrossRefMATH
Zurück zum Zitat Sahu P. K., Marazi N. F., Majumdar B. B., Maji A. and Pani A. (2024) How are sociodemographic differences contributing to red light violation behavior? the underlying role of gender, age, driving experience, and income. Transp. Lett. 15 Sahu P. K., Marazi N. F., Majumdar B. B., Maji A. and Pani A. (2024) How are sociodemographic differences contributing to red light violation behavior? the underlying role of gender, age, driving experience, and income. Transp. Lett. 15
Zurück zum Zitat Shahariar, G. M. H., Bodisco, T. A., Zare, A., Sajjad, M., Jahirul, M. I., Van, T. C., Bartlett, H., Ristovski, Z., & Brown, R. J. (2022). Impact of driving style and traffic condition on emissions and fuel consumption during real-world transient operation. Fuel, 319, 11.CrossRef Shahariar, G. M. H., Bodisco, T. A., Zare, A., Sajjad, M., Jahirul, M. I., Van, T. C., Bartlett, H., Ristovski, Z., & Brown, R. J. (2022). Impact of driving style and traffic condition on emissions and fuel consumption during real-world transient operation. Fuel, 319, 11.CrossRef
Zurück zum Zitat Shen, P. H., Zhao, Z. G., Li, J. W., & Zhan, X. W. (2018). Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route. Transport. Res. Part D-Transport. Environ., 59, 346–360.CrossRefMATH Shen, P. H., Zhao, Z. G., Li, J. W., & Zhan, X. W. (2018). Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route. Transport. Res. Part D-Transport. Environ., 59, 346–360.CrossRefMATH
Zurück zum Zitat Sun, J., Zhai, N. N., Miao, J. C., & Sun, H. P. (2022). Can Green Finance Effectively Promote the Carbon Emission Reduction in “Local-Neighborhood” Areas?-Empirical Evidence from China. Agriculture-Basel, 12, 10.MATH Sun, J., Zhai, N. N., Miao, J. C., & Sun, H. P. (2022). Can Green Finance Effectively Promote the Carbon Emission Reduction in “Local-Neighborhood” Areas?-Empirical Evidence from China. Agriculture-Basel, 12, 10.MATH
Zurück zum Zitat Uthathip, N., Bhasaputra, P., & Pattaraprakorn, W. (2022). Application of ANFIS model for Thailand’s electric vehicle consumption. Computer Systems Science and Engineering, 42(1), 69–86.CrossRef Uthathip, N., Bhasaputra, P., & Pattaraprakorn, W. (2022). Application of ANFIS model for Thailand’s electric vehicle consumption. Computer Systems Science and Engineering, 42(1), 69–86.CrossRef
Zurück zum Zitat Wang, W. H., Zhang, W., Guo, H. W., Bubb, H., & Ikeuchi, K. (2011). A safety-based approaching behavioural model with various driving characteristics. Transp. Res. Pt. C-Emerg. Technol., 19(6), 1202–1214.CrossRefMATH Wang, W. H., Zhang, W., Guo, H. W., Bubb, H., & Ikeuchi, K. (2011). A safety-based approaching behavioural model with various driving characteristics. Transp. Res. Pt. C-Emerg. Technol., 19(6), 1202–1214.CrossRefMATH
Zurück zum Zitat Xu, N., Li, X. H., Yue, F. L., Jia, Y. F., Liu, Q., & Zhao, D. (2023). An eco-driving evaluation method for battery electric bus drivers using low-frequency big data. IEEE Transactions on Intelligent Transportation Systems, 24(9), 9296–9308.CrossRef Xu, N., Li, X. H., Yue, F. L., Jia, Y. F., Liu, Q., & Zhao, D. (2023). An eco-driving evaluation method for battery electric bus drivers using low-frequency big data. IEEE Transactions on Intelligent Transportation Systems, 24(9), 9296–9308.CrossRef
Zurück zum Zitat Yan, C., Coenen, F., Yue, Y., Yang, X. S., & Zhang, B. L. (2016). Video-based classification of driving behavior using a hierarchical classification system with multiple features. International Journal of Pattern Recognition and Artificial Intelligence, 30(5), 33.CrossRefMATH Yan, C., Coenen, F., Yue, Y., Yang, X. S., & Zhang, B. L. (2016). Video-based classification of driving behavior using a hierarchical classification system with multiple features. International Journal of Pattern Recognition and Artificial Intelligence, 30(5), 33.CrossRefMATH
Zurück zum Zitat Yan, X., & Sun, S. H. (2021). Impact of electric vehicle development on China’s energy consumption and greenhouse gas emissions. Clean Technologies and Environmental Policy, 23(10), 2909–2925.MathSciNetCrossRefMATH Yan, X., & Sun, S. H. (2021). Impact of electric vehicle development on China’s energy consumption and greenhouse gas emissions. Clean Technologies and Environmental Policy, 23(10), 2909–2925.MathSciNetCrossRefMATH
Zurück zum Zitat Yang, Y. H., Dong, R. X., Ren, X. Y., & Fu, M. Z. (2024). Exploring sustainable planning strategies for carbon emission reduction in Beijing’s transportation sector: A multi-scenario carbon peak analysis using the extended STIRPAT model. Sustainability, 16(11), 23.CrossRef Yang, Y. H., Dong, R. X., Ren, X. Y., & Fu, M. Z. (2024). Exploring sustainable planning strategies for carbon emission reduction in Beijing’s transportation sector: A multi-scenario carbon peak analysis using the extended STIRPAT model. Sustainability, 16(11), 23.CrossRef
Zurück zum Zitat Zhang, Q., Chen, Q. S., Xu, L. Z., Xu, X. Q., & Liang, Z. W. (2023). Wheat lodging direction detection for combine harvesters based on improved K-means and bag of visual words. Agronomy-Basel, 13, 9.MATH Zhang, Q., Chen, Q. S., Xu, L. Z., Xu, X. Q., & Liang, Z. W. (2023). Wheat lodging direction detection for combine harvesters based on improved K-means and bag of visual words. Agronomy-Basel, 13, 9.MATH
Metadaten
Titel
Investigating the Economical Classification of Driving Behavior Utilizing Dynamic Thresholds
verfasst von
Hai Zhao
Weiqi Zhou
Majun Fei
Chaofeng Pan
Dehua Shi
Publikationsdatum
24.01.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00210-2