Skip to main content
Erschienen in: Adsorption 5/2018

06.06.2018

Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption

verfasst von: Sadegh Jamali, Masoud Mofarahi, Alirio E. Rodrigues

Erschienen in: Adsorption | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study is an attempt to simulate and analyze a lab-scale two-bed pressure swing adsorption in order to investigate the performance of three different adsorbents (Cu-BTC as a new generation adsorbent, activated carbon, and zeolite 5A) with different feed compositions, and find a novel combination of layered bed. Four different flows of steam methane reforming reactor were considered as inlet feeds for hydrogen purification. Comparison of the feeds with different compositions showed that in the presence of high amounts of impurities, an adsorption bed of Cu-BTC produces hydrogen at a higher purity than activated carbon, zeolite 5A, or an activated carbon-zeolite 5A layered bed. The simulation results from feed 4 (H2:CO2:CO:CH4 = 0.4574:0.3174:0.0622:0.1630) with high amounts of impurities, showed that the use of Cu-BTC leads to hydrogen purity of up to 97.22%, while activated carbon, zeolite 5A, and the layered bed cannot improve the purity beyond 86.46%. This work shows that Cu-BTC is capable of being used in the first layer of layered beds. This was confirmed by comparing the performance of the three combinations of Cu-BTC, activated carbon, and zeolite 5A. The first configuration of the three adsorbents, in which the Cu-BTC was used as the first layer, purified hydrogen up to + 99.99% and recovered it up to 21.25%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahn, S., You, Y.-W., Lee, D.-G., Kim, K.-H., Oh, M., Lee, C.-H.: Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chem. Eng. Sci. 68(1), 413–423 (2012)CrossRef Ahn, S., You, Y.-W., Lee, D.-G., Kim, K.-H., Oh, M., Lee, C.-H.: Layered two- and four-bed PSA processes for H2 recovery from coal gas. Chem. Eng. Sci. 68(1), 413–423 (2012)CrossRef
Zurück zum Zitat Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)CrossRef Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)CrossRef
Zurück zum Zitat Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007) Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2007)
Zurück zum Zitat Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRef
Zurück zum Zitat Collins, D.J., Zhou, H.-C.: Hydrogen storage in metal–organic frameworks. J. Mater. Chem. 17(30), 3154 (2007)CrossRef Collins, D.J., Zhou, H.-C.: Hydrogen storage in metal–organic frameworks. J. Mater. Chem. 17(30), 3154 (2007)CrossRef
Zurück zum Zitat Cruz, P., Alves, M.A., Magalhães, F.D., Mendes, A.: Solution of hyperbolic PDEs using a stable adaptive multiresolution method. Chem. Eng. Sci. 58(9), 1777–1792 (2003)CrossRef Cruz, P., Alves, M.A., Magalhães, F.D., Mendes, A.: Solution of hyperbolic PDEs using a stable adaptive multiresolution method. Chem. Eng. Sci. 58(9), 1777–1792 (2003)CrossRef
Zurück zum Zitat Cui, Y., Yue, Y., Qian, G., Chen, B.: Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012)CrossRefPubMed Cui, Y., Yue, Y., Qian, G., Chen, B.: Luminescent functional metal–organic frameworks. Chem. Rev. 112(2), 1126–1162 (2012)CrossRefPubMed
Zurück zum Zitat DeCoste, J.B., et al.: The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 1(38), 11922 (2013)CrossRef DeCoste, J.B., et al.: The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 1(38), 11922 (2013)CrossRef
Zurück zum Zitat Delgado, J.A., Águeda, V.I., Uguina, M.A., Sotelo, J.L., Brea, P., Grande, C.A.: Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res. 53(40), 15414–15426 (2014)CrossRef Delgado, J.A., Águeda, V.I., Uguina, M.A., Sotelo, J.L., Brea, P., Grande, C.A.: Adsorption and diffusion of H2, CO, CH4, and CO2 in BPL activated carbon and 13X zeolite: evaluation of performance in pressure swing adsorption hydrogen purification by simulation. Ind. Eng. Chem. Res. 53(40), 15414–15426 (2014)CrossRef
Zurück zum Zitat Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968)CrossRef Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968)CrossRef
Zurück zum Zitat Eguchi, K.: Clean Energy Systems and Experiences, 1st edn. InTech, Rijeka, Croatia (2010)CrossRef Eguchi, K.: Clean Energy Systems and Experiences, 1st edn. InTech, Rijeka, Croatia (2010)CrossRef
Zurück zum Zitat Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952) Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)
Zurück zum Zitat Grant Glover, T., Peterson, G.W., Schindler, B.J., Britt, D., Yaghi, O.: MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 66(2), 163–170 (2011)CrossRef Grant Glover, T., Peterson, G.W., Schindler, B.J., Britt, D., Yaghi, O.: MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 66(2), 163–170 (2011)CrossRef
Zurück zum Zitat Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T., Xu, Q.: Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 133(31), 11822–11825 (2011)CrossRefPubMed Gu, X., Lu, Z.-H., Jiang, H.-L., Akita, T., Xu, Q.: Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 133(31), 11822–11825 (2011)CrossRefPubMed
Zurück zum Zitat Gul-E-Noor, F., et al.: Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 13(17), 7783 (2011)CrossRefPubMed Gul-E-Noor, F., et al.: Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 13(17), 7783 (2011)CrossRefPubMed
Zurück zum Zitat Holladay, J.D.D., Hu, J., King, D.L.L., Wang, Y.: An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)CrossRef Holladay, J.D.D., Hu, J., King, D.L.L., Wang, Y.: An overview of hydrogen production technologies. Catal. Today 139(4), 244–260 (2009)CrossRef
Zurück zum Zitat Huang, Q., Malekian, A., Eić, M.: Optimization of PSA process for producing enriched hydrogen from plasma reactor gas. Sep. Purif. Technol. 62(1), 22–31 (2008)CrossRef Huang, Q., Malekian, A., Eić, M.: Optimization of PSA process for producing enriched hydrogen from plasma reactor gas. Sep. Purif. Technol. 62(1), 22–31 (2008)CrossRef
Zurück zum Zitat Jee, J., Kim, M., Lee, C.: Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures. Ind. Eng. Chem. Res. 40, 868–878 (2001)CrossRef Jee, J., Kim, M., Lee, C.: Adsorption characteristics of hydrogen mixtures in a layered bed: binary, ternary, and five-component mixtures. Ind. Eng. Chem. Res. 40, 868–878 (2001)CrossRef
Zurück zum Zitat Krungleviciute, V., et al.: Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2 (H2O)3 metal-organic framework. Langmuir 23, 3106–3109 2007CrossRef Krungleviciute, V., et al.: Argon adsorption on Cu3(benzene-1,3,5-tricarboxylate)2 (H2O)3 metal-organic framework. Langmuir 23, 3106–3109 2007CrossRef
Zurück zum Zitat Lee, J.J., Kim, M.K., Lee, D.G., Ahn, H., Kim, M.J., Lee, C.H.: Heat-exchange pressure swing adsorption process for hydrogen separation. AIChE J. 54(8), 2054–2064 (2008)CrossRef Lee, J.J., Kim, M.K., Lee, D.G., Ahn, H., Kim, M.J., Lee, C.H.: Heat-exchange pressure swing adsorption process for hydrogen separation. AIChE J. 54(8), 2054–2064 (2008)CrossRef
Zurück zum Zitat Liu, K., Song, C., Subramani, V. (eds.): Hydrogen and Syngas Production and Purification Technologies. Wiley, Hoboken, NJ (2009) Liu, K., Song, C., Subramani, V. (eds.): Hydrogen and Syngas Production and Purification Technologies. Wiley, Hoboken, NJ (2009)
Zurück zum Zitat Lomig, H., Elsa, J., Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49(16), 7497–7503 (2010) Lomig, H., Elsa, J., Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49(16), 7497–7503 (2010)
Zurück zum Zitat Lopes, F.V.S., et al.: Adsorption of H2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44(5), 1045–1073 (2009a)CrossRef Lopes, F.V.S., et al.: Adsorption of H2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44(5), 1045–1073 (2009a)CrossRef
Zurück zum Zitat Lopes, F.V.S., Grande, C.A., Ribeiro, A.M., Oliveira, E.L.G., Loureiro, J.M., Rodrigues, A.E.: Enhancing capacity of activated carbons for hydrogen purification. Ind. Eng. Chem. Res. 48(8), 3978–3990 (2009b)CrossRef Lopes, F.V.S., Grande, C.A., Ribeiro, A.M., Oliveira, E.L.G., Loureiro, J.M., Rodrigues, A.E.: Enhancing capacity of activated carbons for hydrogen purification. Ind. Eng. Chem. Res. 48(8), 3978–3990 (2009b)CrossRef
Zurück zum Zitat Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66(3), 303–317 (2011)CrossRef Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Activated carbon for hydrogen purification by pressure swing adsorption: multicomponent breakthrough curves and PSA performance. Chem. Eng. Sci. 66(3), 303–317 (2011)CrossRef
Zurück zum Zitat Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Fast-cycling VPSA for hydrogen purification. Fuel 93, 510–523 (2012)CrossRef Lopes, F.V.S., Grande, C.A., Rodrigues, A.E.: Fast-cycling VPSA for hydrogen purification. Fuel 93, 510–523 (2012)CrossRef
Zurück zum Zitat Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption, 20(2–3), 511–524 (2014)CrossRef Luberti, M., Friedrich, D., Brandani, S., Ahn, H.: Design of a H2 PSA for cogeneration of ultrapure hydrogen and power at an advanced integrated gasification combined cycle with pre-combustion capture. Adsorption, 20(2–3), 511–524 (2014)CrossRef
Zurück zum Zitat Ma, S., Zhou, H.-C.: Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)CrossRef Ma, S., Zhou, H.-C.: Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 46(1), 44–53 (2010)CrossRef
Zurück zum Zitat Malek, A., Farooq, S.: Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AIChE J. 43(3), 761–776 (1997)CrossRef Malek, A., Farooq, S.: Kinetics of hydrocarbon adsorption on activated carbon and silica gel. AIChE J. 43(3), 761–776 (1997)CrossRef
Zurück zum Zitat Mofarahi, M.: Dynamic simulation of vacuum pressure swing adsorption process. In: The 15th IASTED International Conference Applied Simulation and Modeling, vol. 1, p 33. Rhodes, Greece (2006) Mofarahi, M.: Dynamic simulation of vacuum pressure swing adsorption process. In: The 15th IASTED International Conference Applied Simulation and Modeling, vol. 1, p 33. Rhodes, Greece (2006)
Zurück zum Zitat Mofarahi, M., Sadrameli, M., Towfighi, J.: Four-bed vacuum pressure swing adsorption process for propylene/propane separation. Ind. Eng. Chem. Res. 44(5), 1557–1564 (2005)CrossRef Mofarahi, M., Sadrameli, M., Towfighi, J.: Four-bed vacuum pressure swing adsorption process for propylene/propane separation. Ind. Eng. Chem. Res. 44(5), 1557–1564 (2005)CrossRef
Zurück zum Zitat Papadias, D.D., Ahmed, S., Kumar, R., Joseck, F.: Hydrogen quality for fuel cell vehicles: a modeling study of the sensitivity of impurity content in hydrogen to the process variables in the SMR–PSA pathway. Int. J. Hydrog. Energy 34(15), 6021–6035 (2009)CrossRef Papadias, D.D., Ahmed, S., Kumar, R., Joseck, F.: Hydrogen quality for fuel cell vehicles: a modeling study of the sensitivity of impurity content in hydrogen to the process variables in the SMR–PSA pathway. Int. J. Hydrog. Energy 34(15), 6021–6035 (2009)CrossRef
Zurück zum Zitat Park, J., Kim, J., Cho, S.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46(4), 790–802 (2000)CrossRef Park, J., Kim, J., Cho, S.: Performance analysis of four-bed H2 PSA process using layered beds. AIChE J. 46(4), 790–802 (2000)CrossRef
Zurück zum Zitat Peng, M.M., Kim, D.K., Aziz, A., Back, K.R., Jeon, U.J., Jang, H.T.: CO2 Adsorption of Metal Organic Framework Material Cu-BTC via Different Preparation Routes, pp. 244–251. Springer, Berlin (2012) Peng, M.M., Kim, D.K., Aziz, A., Back, K.R., Jeon, U.J., Jang, H.T.: CO2 Adsorption of Metal Organic Framework Material Cu-BTC via Different Preparation Routes, pp. 244–251. Springer, Berlin (2012)
Zurück zum Zitat Peterson, G.W., Wagner, G.W., Balboa, A., Mahle, J., Sewell, T., Karwacki, C.J.: Ammonia vapor removal by Cu (BTC) and its characterization by MAS NMR. J. Phys. Chem. C 113(31), 13906–13917 (2009)CrossRef Peterson, G.W., Wagner, G.W., Balboa, A., Mahle, J., Sewell, T., Karwacki, C.J.: Ammonia vapor removal by Cu (BTC) and its characterization by MAS NMR. J. Phys. Chem. C 113(31), 13906–13917 (2009)CrossRef
Zurück zum Zitat Plaza, M.G., et al.: Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Sep. Purif. Technol. 90, 109–119 (2012)CrossRef Plaza, M.G., et al.: Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Sep. Purif. Technol. 90, 109–119 (2012)CrossRef
Zurück zum Zitat Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63, 5258–5273 (2008)CrossRef Ribeiro, A.M., Grande, C.A., Lopes, F.V.S., Loureiro, J.M., Rodrigues, A.E.: A parametric study of layered bed PSA for hydrogen purification. Chem. Eng. Sci. 63, 5258–5273 (2008)CrossRef
Zurück zum Zitat Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)CrossRef Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem. Int. Ed. 44(30), 4670–4679 (2005)CrossRef
Zurück zum Zitat Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984) Ruthven, D.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)
Zurück zum Zitat Shu, C.: Differential Quadrature and Its Application in Engineering, 1st edn. Springer, London (2000)CrossRef Shu, C.: Differential Quadrature and Its Application in Engineering, 1st edn. Springer, London (2000)CrossRef
Zurück zum Zitat Silva, J.A.C., da Silva, F.A., Rodrigues, A.E.: Methodology of Gas Adsorption Process Design. Separation of Propane/Propylene and n/iso-Paraffins Mixtures, pp. 371–394. Elsevier, New York (1999) Silva, J.A.C., da Silva, F.A., Rodrigues, A.E.: Methodology of Gas Adsorption Process Design. Separation of Propane/Propylene and n/iso-Paraffins Mixtures, pp. 371–394. Elsevier, New York (1999)
Zurück zum Zitat Silva, B., et al.: H2 purification by pressure swing adsorption using CuBTC. Sep. Purif. Technol. 118, 744–756 (2013)CrossRef Silva, B., et al.: H2 purification by pressure swing adsorption using CuBTC. Sep. Purif. Technol. 118, 744–756 (2013)CrossRef
Zurück zum Zitat Skoulidas, A.I.: Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. J. Am. Chem. Soc. 126(5), 1356–1357 (2004)CrossRefPubMed Skoulidas, A.I.: Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. J. Am. Chem. Soc. 126(5), 1356–1357 (2004)CrossRefPubMed
Zurück zum Zitat Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112(2), 782–835 (2012)CrossRefPubMed Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.-W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112(2), 782–835 (2012)CrossRefPubMed
Zurück zum Zitat Tsai, W.T., Lai, C.W., Hsien, K.J.: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J. Colloid Interface Sci. 263(1), 29–34 (2003)CrossRefPubMed Tsai, W.T., Lai, C.W., Hsien, K.J.: Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution. J. Colloid Interface Sci. 263(1), 29–34 (2003)CrossRefPubMed
Zurück zum Zitat Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V., Bülow, M., Wang, Q.M.: Nanopore structure and sorption properties of Cu–metal–organic framework. Nano Lett. 3(6), 713–718 (2003)CrossRef Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V., Bülow, M., Wang, Q.M.: Nanopore structure and sorption properties of Cu–metal–organic framework. Nano Lett. 3(6), 713–718 (2003)CrossRef
Zurück zum Zitat Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 33(10), 1375–1384 (1978)CrossRef Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Chem. Eng. Sci. 33(10), 1375–1384 (1978)CrossRef
Zurück zum Zitat Yang, Q., Xue, C., Zhong, C., Chen, J.-F.: Molecular simulation of separation of CO2 from flue gases in CU-BTC metal-organic framework. AIChE J. 53(11), 2832–2840 (2007)CrossRef Yang, Q., Xue, C., Zhong, C., Chen, J.-F.: Molecular simulation of separation of CO2 from flue gases in CU-BTC metal-organic framework. AIChE J. 53(11), 2832–2840 (2007)CrossRef
Zurück zum Zitat Yang, S.-I., Choi, D.-Y., Jang, S.-C., Kim, S.-H., Choi, D.-K.: Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 14(4–5), 583–590 (2008)CrossRef Yang, S.-I., Choi, D.-Y., Jang, S.-C., Kim, S.-H., Choi, D.-K.: Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas. Adsorption 14(4–5), 583–590 (2008)CrossRef
Zurück zum Zitat You, Y.-W., Lee, D.-G., Yoon, K.-Y., Moon, D.-K., Kim, S.M., Lee, C.-H.: H2 PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrog. Energy 37, 18175–18186 (2012)CrossRef You, Y.-W., Lee, D.-G., Yoon, K.-Y., Moon, D.-K., Kim, S.M., Lee, C.-H.: H2 PSA purifier for CO removal from hydrogen mixtures. Int. J. Hydrog. Energy 37, 18175–18186 (2012)CrossRef
Metadaten
Titel
Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption
verfasst von
Sadegh Jamali
Masoud Mofarahi
Alirio E. Rodrigues
Publikationsdatum
06.06.2018
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 5/2018
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-018-9955-0

Weitere Artikel der Ausgabe 5/2018

Adsorption 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.