Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2018

02.04.2018

Investigation of Hydrogen Embrittlement Susceptibility of X80 Weld Joints by Thermal Simulation

verfasst von: Huangtao Peng, Teng An, Shuqi Zheng, Bingwei Luo, Siyu Wang, Shuai Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this study was to investigate the hydrogen embrittlement (HE) susceptibility and influence mechanism of X80 weld joints. Slow strain rate testing (SSRT) under in situ H-charging, combined with microstructure and fracture analysis, was performed on the base metal (BM), weld metal (WM), thermally simulated fine-grained heat-affected zone (FGHAZ) and coarse-grained heat-affected zone (CGHAZ). Results showed that the WM and simulated HAZ had a greater degree of high local strain distribution than the BM; compared to the CGHAZ, the FGHAZ had lower microhardness and more uniformly distributed stress. SSRT results showed that the weld joint was highly sensitive to HE; the HE index decreased in the following sequence: FGHAZ, WM, CGHAZ and BM. The effect of the microstructure on HE was mainly reflected in microstructure, local stress distribution and microhardness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, and A.E. Stevenson, Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment, Corros. Sci., 2014, 78, p 313–321CrossRef A.J. Slifka, E.S. Drexler, N.E. Nanninga, Y.S. Levy, J.D. McColskey, R.L. Amaro, and A.E. Stevenson, Fatigue Crack Growth of Two Pipeline Steels in a Pressurized Hydrogen Environment, Corros. Sci., 2014, 78, p 313–321CrossRef
2.
Zurück zum Zitat K. Shen, L. Xu, Y. Guo, J. Shi, and M. Wang, Effect of Microstructure on Hydrogen Diffusion and Notch Tensile Strength of Large Steel Forging, Mater. Sci. Eng. A, 2015, 628, p 149–153CrossRef K. Shen, L. Xu, Y. Guo, J. Shi, and M. Wang, Effect of Microstructure on Hydrogen Diffusion and Notch Tensile Strength of Large Steel Forging, Mater. Sci. Eng. A, 2015, 628, p 149–153CrossRef
3.
Zurück zum Zitat X.F. Li, Y.F. Wang, P. Zhang, B. Li, X.L. Song, and J. Chen, Effect of Pre-Strain on Hydrogen Embrittlement of High Strength Steels, Mater. Sci. Eng. A, 2014, 616, p 116–122CrossRef X.F. Li, Y.F. Wang, P. Zhang, B. Li, X.L. Song, and J. Chen, Effect of Pre-Strain on Hydrogen Embrittlement of High Strength Steels, Mater. Sci. Eng. A, 2014, 616, p 116–122CrossRef
4.
Zurück zum Zitat X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved Resistance to Hydrogen Embrittlement in a High-Strength Steel by Quenching–Partitioning–Tempering Treatment, Scripta Mater., 2015, 97, p 21–24CrossRef X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved Resistance to Hydrogen Embrittlement in a High-Strength Steel by Quenching–Partitioning–Tempering Treatment, Scripta Mater., 2015, 97, p 21–24CrossRef
5.
Zurück zum Zitat V. Olden, A. Alvaro, and O.M. Akselsen, Hydrogen Diffusion and Hydrogen Influenced Critical Stress Intensity in an API, X70 Pipeline Steel Welded Joint- Experiments and FE Simulations, Int. J. Hydrogen Energy, 2012, 37, p 1147–1148CrossRef V. Olden, A. Alvaro, and O.M. Akselsen, Hydrogen Diffusion and Hydrogen Influenced Critical Stress Intensity in an API, X70 Pipeline Steel Welded Joint- Experiments and FE Simulations, Int. J. Hydrogen Energy, 2012, 37, p 1147–1148CrossRef
6.
Zurück zum Zitat M. Zrilic, V. Grabulov, Z. Burzic, M. Arsic, and S. Sedmak, Static and Impact Crack Properties of a High-Strength Steel Welded Joint, Int. J. Press. Vessels Pip., 2007, 84, p 139–150CrossRef M. Zrilic, V. Grabulov, Z. Burzic, M. Arsic, and S. Sedmak, Static and Impact Crack Properties of a High-Strength Steel Welded Joint, Int. J. Press. Vessels Pip., 2007, 84, p 139–150CrossRef
7.
Zurück zum Zitat I.A. Bataev, A.A. Bataev, V.G. Burov, Y.S. Lizunkova, and E.E. Zakharevich, Structure of Widmanstatten Crystals of Ferrite and Cementite, ISSN 0967-0912, Steel Trans., 2008, 38, p 684–687CrossRef I.A. Bataev, A.A. Bataev, V.G. Burov, Y.S. Lizunkova, and E.E. Zakharevich, Structure of Widmanstatten Crystals of Ferrite and Cementite, ISSN 0967-0912, Steel Trans., 2008, 38, p 684–687CrossRef
8.
Zurück zum Zitat Y.D. Han, H.Y. Jing, and L.Y. Xu, Welding Heat Input Effect on the Hydrogen Permeation in the X80 Steel Welded Joints, Mater. Chem. Phys., 2007, 84, p 139–150 Y.D. Han, H.Y. Jing, and L.Y. Xu, Welding Heat Input Effect on the Hydrogen Permeation in the X80 Steel Welded Joints, Mater. Chem. Phys., 2007, 84, p 139–150
9.
Zurück zum Zitat L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410CrossRef L.W. Wang, Z.Y. Liu, Z.Y. Cui, C.W. Du, X.H. Wang, and X.G. Li, In Situ Corrosion Characterization of Simulated Weld Heat Affected Zone on API, X80 Pipeline Steel, Corros. Sci., 2014, 85, p 401–410CrossRef
10.
Zurück zum Zitat J. Lin, N. Ma, Y. Lei, and H. Murakawa, Measurement of Residual Stress in Arc Welded Lap Joints by cosα X-ray Diffraction Method, J. Mater. Process. Technol., 2017, 243, p 387–394CrossRef J. Lin, N. Ma, Y. Lei, and H. Murakawa, Measurement of Residual Stress in Arc Welded Lap Joints by cosα X-ray Diffraction Method, J. Mater. Process. Technol., 2017, 243, p 387–394CrossRef
11.
Zurück zum Zitat H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2013, 22, p 170–175CrossRef H.B. Xue and Y.F. Cheng, Hydrogen Permeation and Electrochemical Corrosion Behavior of the X80 Pipeline Steel Weld, J. Mater. Eng. Perform., 2013, 22, p 170–175CrossRef
12.
Zurück zum Zitat W.M. Zhao, T.M. Zhang, Y.J. Zhao, J.B. Sun, and Y. Wang, Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint Under High-Pressure Coal Gas Environment, Corros. Sci., 2016, 111, p 84–97CrossRef W.M. Zhao, T.M. Zhang, Y.J. Zhao, J.B. Sun, and Y. Wang, Hydrogen Permeation and Embrittlement Susceptibility of X80 Welded Joint Under High-Pressure Coal Gas Environment, Corros. Sci., 2016, 111, p 84–97CrossRef
13.
Zurück zum Zitat J.M. Pardal, S.S.M. Tavares, B.A.R.S. Barbosa, F.B. Mainier, J.S. Corte, and J.P. Pardal, Investigation of Hydrogen Embrittlement Failure in a Steam Separator by Field Metallography, Eng. Fail. Anal., 2013, 35, p 46–53CrossRef J.M. Pardal, S.S.M. Tavares, B.A.R.S. Barbosa, F.B. Mainier, J.S. Corte, and J.P. Pardal, Investigation of Hydrogen Embrittlement Failure in a Steam Separator by Field Metallography, Eng. Fail. Anal., 2013, 35, p 46–53CrossRef
14.
Zurück zum Zitat C.D. Beachem, A new Model for Hydrogen-Assisted Cracking, Metall. Trans., 1972, 3, p 437–451 C.D. Beachem, A new Model for Hydrogen-Assisted Cracking, Metall. Trans., 1972, 3, p 437–451
15.
Zurück zum Zitat A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. ASM, 1960, 52, p 54–80 A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. ASM, 1960, 52, p 54–80
16.
Zurück zum Zitat C. Zapffe and C. Sims, Hydrogen Embrittlement, Internal Stress and Defects in Steel, Trans. ASM, 1941, 145, p 225–271 C. Zapffe and C. Sims, Hydrogen Embrittlement, Internal Stress and Defects in Steel, Trans. ASM, 1941, 145, p 225–271
17.
Zurück zum Zitat F. Mohammadi, F.F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API, X80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333CrossRef F. Mohammadi, F.F. Eliyan, and A. Alfantazi, Corrosion of Simulated Weld HAZ of API, X80 Pipeline Steel, Corros. Sci., 2012, 63, p 323–333CrossRef
18.
Zurück zum Zitat H. Aydin and T.W. Nelson, Microstructure and Mechanical Properties of Hard Zone in Friction Stir Welded X80 Pipeline Steel Relative To Different Heat Input, Mater. Sci. Eng. A, 2013, 586, p 313–322CrossRef H. Aydin and T.W. Nelson, Microstructure and Mechanical Properties of Hard Zone in Friction Stir Welded X80 Pipeline Steel Relative To Different Heat Input, Mater. Sci. Eng. A, 2013, 586, p 313–322CrossRef
19.
Zurück zum Zitat S.P. Trasatti, E. Sivieri, and F. Mazza, Susceptibility of a X80 Steel to Hydrogen Embrittlement, Mater. Corros., 2005, 56, p 111–117CrossRef S.P. Trasatti, E. Sivieri, and F. Mazza, Susceptibility of a X80 Steel to Hydrogen Embrittlement, Mater. Corros., 2005, 56, p 111–117CrossRef
20.
Zurück zum Zitat W.G. Zhao, W. Wang, S.H. Chen, and J.B. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A., 2011, 528, p 7417–7422CrossRef W.G. Zhao, W. Wang, S.H. Chen, and J.B. Qu, Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of X90 Pipeline Steel, Mater. Sci. Eng. A., 2011, 528, p 7417–7422CrossRef
21.
Zurück zum Zitat E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, Hydrogen Diffusion into Three Metallurgical Microstructures of a CeMn X65 and Low Alloy F22 Sour Service Steel Pipelines, Int. J. Hydrogen Energy, 2014, 39, p 13300–13313CrossRef E. Fallahmohammadi, F. Bolzoni, G. Fumagalli, G. Re, G. Benassi, and L. Lazzari, Hydrogen Diffusion into Three Metallurgical Microstructures of a CeMn X65 and Low Alloy F22 Sour Service Steel Pipelines, Int. J. Hydrogen Energy, 2014, 39, p 13300–13313CrossRef
22.
Zurück zum Zitat X.F. Li, J. Zhang, Y.F. Wang, M.M. Ma, S. Shen, and X.L. Song, The Dual Role of Shot Peening in Hydrogen-Assisted Cracking of PSB1080 High Strength Steel, Mater. Des., 2016, 110, p 602–615CrossRef X.F. Li, J. Zhang, Y.F. Wang, M.M. Ma, S. Shen, and X.L. Song, The Dual Role of Shot Peening in Hydrogen-Assisted Cracking of PSB1080 High Strength Steel, Mater. Des., 2016, 110, p 602–615CrossRef
23.
Zurück zum Zitat C.R.F. Azevedo, Failure Analysis of a Crude Oil Pipeline, Eng. Fail. Anal., 2007, 14, p 978–994CrossRef C.R.F. Azevedo, Failure Analysis of a Crude Oil Pipeline, Eng. Fail. Anal., 2007, 14, p 978–994CrossRef
24.
Zurück zum Zitat K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J Iron Steel Inst., 1965, 203, p 721–727 K.W. Andrews, Empirical Formulae for the Calculation of Some Transformation Temperatures, J Iron Steel Inst., 1965, 203, p 721–727
25.
Zurück zum Zitat W. Zhao, Y. Zou, K.J. Matsuda, and Z.D. Zou, Corrosion Behavior of Reheated CGHAZ of X80 Pipeline Steel in H2S-Containing Environments, Mater. Des., 2016, 99, p 44–56CrossRef W. Zhao, Y. Zou, K.J. Matsuda, and Z.D. Zou, Corrosion Behavior of Reheated CGHAZ of X80 Pipeline Steel in H2S-Containing Environments, Mater. Des., 2016, 99, p 44–56CrossRef
26.
Zurück zum Zitat T. An, H.T. Peng, P.P. Bai, S.Q. Zheng, X.L. Wen, and L. Zhang, Influence of Hydrogen Pressure on Fatigue Properties of X80 Pipeline Steel, J. Hydrogen Energy, 2017, 42, p 15669–15678CrossRef T. An, H.T. Peng, P.P. Bai, S.Q. Zheng, X.L. Wen, and L. Zhang, Influence of Hydrogen Pressure on Fatigue Properties of X80 Pipeline Steel, J. Hydrogen Energy, 2017, 42, p 15669–15678CrossRef
27.
Zurück zum Zitat X.Y. Zhang, H.L. Gao, and Z.Y. Bi, Effect of Welding Thermal Cycle to Microstructure and Properties of X80 Welded Steels, J. Mater. Sci. Technol., 2009, 17, p 159–163 X.Y. Zhang, H.L. Gao, and Z.Y. Bi, Effect of Welding Thermal Cycle to Microstructure and Properties of X80 Welded Steels, J. Mater. Sci. Technol., 2009, 17, p 159–163
28.
Zurück zum Zitat T.M. Zhang, W.M. Zhao, Q.S. Deng, W. Jiang, Y.L. Wang, Y. Wang, and W.C. Jiang, Effect of Microstructure Inhomogeneity on Hydrogen Embrittlement Susceptibility of X80 Welding HAZ Under Pressurized Gaseous Hydrogen, Int. J. Hydrogen Energy, 2017, 42, p 25102–25113CrossRef T.M. Zhang, W.M. Zhao, Q.S. Deng, W. Jiang, Y.L. Wang, Y. Wang, and W.C. Jiang, Effect of Microstructure Inhomogeneity on Hydrogen Embrittlement Susceptibility of X80 Welding HAZ Under Pressurized Gaseous Hydrogen, Int. J. Hydrogen Energy, 2017, 42, p 25102–25113CrossRef
29.
Zurück zum Zitat N.E. Nanninga, Y.S. Levy, E.S. Drexler, R.T. Condon, A.E. Stevenson, and A.J. Slifka, Comparison of Hydrogen Embrittlement in Three Pipeline Steels in High Pressure Gaseous Hydrogen Environments, Corros. Sci., 2012, 59, p 1–9CrossRef N.E. Nanninga, Y.S. Levy, E.S. Drexler, R.T. Condon, A.E. Stevenson, and A.J. Slifka, Comparison of Hydrogen Embrittlement in Three Pipeline Steels in High Pressure Gaseous Hydrogen Environments, Corros. Sci., 2012, 59, p 1–9CrossRef
30.
Zurück zum Zitat W.Y. Chu, L.J. Qiao, J.X. Li, Y.J. Su, Y. Yan, Y. Bai et al., Hydrogen Embrittlement and Stress Corrosion Cracking, Science Press, Beijing, 2013 W.Y. Chu, L.J. Qiao, J.X. Li, Y.J. Su, Y. Yan, Y. Bai et al., Hydrogen Embrittlement and Stress Corrosion Cracking, Science Press, Beijing, 2013
31.
Zurück zum Zitat I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, Hydrogen Embrittlement Susceptibility of a High Strength Steel X80, Mater. Sci. Eng. A, 2010, 527, p 7252–7260CrossRef I. Moro, L. Briottet, P. Lemoine, E. Andrieu, C. Blanc, and G. Odemer, Hydrogen Embrittlement Susceptibility of a High Strength Steel X80, Mater. Sci. Eng. A, 2010, 527, p 7252–7260CrossRef
32.
Zurück zum Zitat I. Maroef, D.L. Olson, M. Eberhart, and G.R. Edwards, Hydrogen Trapping in Ferritic Steel Weld Metal, Int. Mater. Rev., 2013, 47, p 191–223CrossRef I. Maroef, D.L. Olson, M. Eberhart, and G.R. Edwards, Hydrogen Trapping in Ferritic Steel Weld Metal, Int. Mater. Rev., 2013, 47, p 191–223CrossRef
33.
Zurück zum Zitat None, Hydrogen embrittlement and stress corrosion cracking, Brit. Corros. J., 2013, 20, p 158–158 None, Hydrogen embrittlement and stress corrosion cracking, Brit. Corros. J., 2013, 20, p 158–158
34.
Zurück zum Zitat R. Kirchheim, Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations, Scripta Mater., 2010, 62, p 67–70CrossRef R. Kirchheim, Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations, Scripta Mater., 2010, 62, p 67–70CrossRef
35.
Zurück zum Zitat G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 50, p 1865–1871CrossRef G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim, Effect of Microstructure on the Hydrogen Trapping Efficiency and Hydrogen Induced Cracking of Linepipe Steel, Corros. Sci., 2008, 50, p 1865–1871CrossRef
36.
Zurück zum Zitat M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, and Y.H. Li, Investigation on the H2S- Resistant Behaviors of Acicular Ferrite and Ultrafine Ferrite, Mater. Lett., 2002, 57, p 141–145CrossRef M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, and Y.H. Li, Investigation on the H2S- Resistant Behaviors of Acicular Ferrite and Ultrafine Ferrite, Mater. Lett., 2002, 57, p 141–145CrossRef
37.
Zurück zum Zitat T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of Non-Metallic Inclusions on Hydrogen-Induced Cracking of API5L X100 Steel, Int. J. Hydrogen Energy, 2010, 35, p 8014–8021CrossRef T.Y. Jin, Z.Y. Liu, and Y.F. Cheng, Effect of Non-Metallic Inclusions on Hydrogen-Induced Cracking of API5L X100 Steel, Int. J. Hydrogen Energy, 2010, 35, p 8014–8021CrossRef
38.
Zurück zum Zitat K. Takasawa, R. Ikeda, N. Ishikawa, and R. Ishigaki, Effects of Grain Size and Dislocation Density on the Susceptibility to High-Pressure Hydrogen Environment Embrittlement of High-Strength Low-Alloy Steels, Int. J. Hydrogen Energy, 2012, 37, p 2669–2675CrossRef K. Takasawa, R. Ikeda, N. Ishikawa, and R. Ishigaki, Effects of Grain Size and Dislocation Density on the Susceptibility to High-Pressure Hydrogen Environment Embrittlement of High-Strength Low-Alloy Steels, Int. J. Hydrogen Energy, 2012, 37, p 2669–2675CrossRef
39.
Zurück zum Zitat H.Y. Liou, R.I. Shieh, F.I. Wei, and S.C. Wang, Roles of Microalloying Elements in Hydrogen Induced Cracking Resistant Property of HSLA Steels, Corrosion, 1993, 49, p 389–398CrossRef H.Y. Liou, R.I. Shieh, F.I. Wei, and S.C. Wang, Roles of Microalloying Elements in Hydrogen Induced Cracking Resistant Property of HSLA Steels, Corrosion, 1993, 49, p 389–398CrossRef
40.
Zurück zum Zitat D. Hardie, E.A. Charles, and A.H. Lopez, Hydrogen Embrittlement of High Strength Pipeline Steels, Corros. Sci., 2006, 48, p 4378–4385CrossRef D. Hardie, E.A. Charles, and A.H. Lopez, Hydrogen Embrittlement of High Strength Pipeline Steels, Corros. Sci., 2006, 48, p 4378–4385CrossRef
41.
Zurück zum Zitat F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 527, p 6997–7001CrossRef F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, and X.G. Li, Effect of Microstructure and Inclusions on Hydrogen Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of X120 Pipeline Steel, Mater. Sci. Eng. A, 2010, 527, p 6997–7001CrossRef
42.
Zurück zum Zitat Z.Y. Liu, X.G. Li, C.W. Du, G.L. Zhai, and Y.F. Cheng, Stress Corrosion Cracking Behavior of X70 Pipe Steel in an Acidic Soil Environment, Corros. Sci., 2008, 50, p 2251–2257CrossRef Z.Y. Liu, X.G. Li, C.W. Du, G.L. Zhai, and Y.F. Cheng, Stress Corrosion Cracking Behavior of X70 Pipe Steel in an Acidic Soil Environment, Corros. Sci., 2008, 50, p 2251–2257CrossRef
43.
Zurück zum Zitat C.Y. Yan, C.Y. Liu, and Y. Bo, 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comp. Mater. Sci., 2014, 83, p 158–163CrossRef C.Y. Yan, C.Y. Liu, and Y. Bo, 3D Modeling of the Hydrogen Distribution in X80 Pipeline Steel Welded Joints, Comp. Mater. Sci., 2014, 83, p 158–163CrossRef
44.
Zurück zum Zitat X. Zhou and J. Song, Effect of Local Stress on Hydrogen Segregation at Grain Boundaries in Metals, Mater. Lett., 2017, 196, p 123–127CrossRef X. Zhou and J. Song, Effect of Local Stress on Hydrogen Segregation at Grain Boundaries in Metals, Mater. Lett., 2017, 196, p 123–127CrossRef
45.
Zurück zum Zitat A. Takahashi and H. Ogawa, Influence of Microhardness and Inclusion on Stress Oriented Hydrogen Induced Cracking of Line Pipe Steels, Trans. Iron Steel Inst., 1996, 36, p 334–340CrossRef A. Takahashi and H. Ogawa, Influence of Microhardness and Inclusion on Stress Oriented Hydrogen Induced Cracking of Line Pipe Steels, Trans. Iron Steel Inst., 1996, 36, p 334–340CrossRef
46.
Zurück zum Zitat W.K. Kim, H.G. Jung, G.T. Park, S.U. Koh, and K.Y. Kim, Relationship between Hydrogen-Induced Cracking and type I, Sulfide Stress Cracking of High-Strength Linepipe Steel, Scripta Mater., 2010, 62, p 195–198CrossRef W.K. Kim, H.G. Jung, G.T. Park, S.U. Koh, and K.Y. Kim, Relationship between Hydrogen-Induced Cracking and type I, Sulfide Stress Cracking of High-Strength Linepipe Steel, Scripta Mater., 2010, 62, p 195–198CrossRef
Metadaten
Titel
Investigation of Hydrogen Embrittlement Susceptibility of X80 Weld Joints by Thermal Simulation
verfasst von
Huangtao Peng
Teng An
Shuqi Zheng
Bingwei Luo
Siyu Wang
Shuai Zhang
Publikationsdatum
02.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3330-x

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Engineering and Performance 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.