Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2017

22.06.2017

Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

verfasst von: Pankaj Kumar, Akhilendra Singh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness \((K_{\text{Ic}} )\) and ductile fracture toughness \((J_{\text{Ic}} )\) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.R. Davis & Associates and ASM International, Handbook Committee. Aluminum and Aluminum Alloys, ASM International, Russell, 1993 J.R. Davis & Associates and ASM International, Handbook Committee. Aluminum and Aluminum Alloys, ASM International, Russell, 1993
2.
Zurück zum Zitat H.E. Boyer, Quenching and Distortion Control, ASM International, Metals Park, OH, 1998 H.E. Boyer, Quenching and Distortion Control, ASM International, Metals Park, OH, 1998
3.
Zurück zum Zitat K. Chandra Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070CrossRef K. Chandra Sekhar, R. Narayanasamy, and K. Velmanirajan, Experimental Investigations on Microstructure and Formability of Cryorolled AA 5052 Sheets, Mater. Des., 2014, 53, p 1064–1070CrossRef
4.
Zurück zum Zitat Y. Lee, D. Shin, K. Park, and W. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359CrossRef Y. Lee, D. Shin, K. Park, and W. Nam, Effect of Annealing Temperature on Microstructures and Mechanical Properties of a 5083 Al Alloy Deformed at Cryogenic Temperature, Scripta Mater., 2004, 51, p 355–359CrossRef
5.
Zurück zum Zitat D. Singh, P.N. Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al–Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655CrossRef D. Singh, P.N. Rao, and R. Jayaganthan, Effect of Deformation Temperature on Mechanical Properties of Ultrafine Grained Al–Mg Alloys Processed by Rolling, Mater. Des., 2013, 50, p 646–655CrossRef
6.
Zurück zum Zitat K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on the Mechanical Properties of AA5083 Alloy and the Portevin-Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117CrossRef K.S.V.B.R. Krishna, K. Chandra Sekhar, R. Tejas, N. Naga Krishna, K. Sivaprasad, R. Narayanasamy, and K. Venkateswarlu, Effect of Cryorolling on the Mechanical Properties of AA5083 Alloy and the Portevin-Le Chatelier Phenomenon, Mater. Des., 2015, 67, p 107–117CrossRef
7.
Zurück zum Zitat K. Gotoh, K. Murakami, and Y. Noda, Fatigue Crack Growth Behaviour of A5083 Series Aluminium Alloys and Their Welded Joints, J. Mar. Sci. Technol., 2011, 16, p 343–353CrossRef K. Gotoh, K. Murakami, and Y. Noda, Fatigue Crack Growth Behaviour of A5083 Series Aluminium Alloys and Their Welded Joints, J. Mar. Sci. Technol., 2011, 16, p 343–353CrossRef
8.
Zurück zum Zitat T. Zhao, J. Zhang, and Y. Jiang, A Study of Fatigue Crack Growth of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 1169–1180 T. Zhao, J. Zhang, and Y. Jiang, A Study of Fatigue Crack Growth of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 1169–1180
9.
Zurück zum Zitat P. Pao, H. Jones, S. Cheng, and C. Feng, Fatigue Crack Propagation in Ultrafine Grained Al–Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169CrossRef P. Pao, H. Jones, S. Cheng, and C. Feng, Fatigue Crack Propagation in Ultrafine Grained Al–Mg Alloy, Int. J. Fatigue, 2005, 27, p 1164–1169CrossRef
10.
Zurück zum Zitat Z. Jin and P.K. Mallick, Effect of Cold Work on the Tensile and Fatigue Performance of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2006, 15, p 540–548CrossRef Z. Jin and P.K. Mallick, Effect of Cold Work on the Tensile and Fatigue Performance of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2006, 15, p 540–548CrossRef
11.
Zurück zum Zitat D. Singh, P. Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769CrossRef D. Singh, P. Rao, and R. Jayaganthan, Microstructures and Impact Toughness Behavior of Al 5083 Alloy Processed by Cryorolling and Afterwards Annealing, Int. J. Miner. Metall. Mater., 2013, 20, p 759–769CrossRef
12.
Zurück zum Zitat P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Improvement of Fracture Toughness (K1c) of 7075 Al Alloy by Cryorolling Process, Mater. Sci. Forum, 2011, 683, p 81–94CrossRef P. Das, R. Jayaganthan, T. Chowdhury, and I.V. Singh, Improvement of Fracture Toughness (K1c) of 7075 Al Alloy by Cryorolling Process, Mater. Sci. Forum, 2011, 683, p 81–94CrossRef
13.
Zurück zum Zitat T. Yagami, K. Manabe, and T. Miyamoto, Ductile Fracture Behavior of 5052 Aluminum Alloy Sheet Under Cyclic Plastic Deformation at Room Temperature, J. Mater. Process. Technol., 2009, 209, p 1042–1047CrossRef T. Yagami, K. Manabe, and T. Miyamoto, Ductile Fracture Behavior of 5052 Aluminum Alloy Sheet Under Cyclic Plastic Deformation at Room Temperature, J. Mater. Process. Technol., 2009, 209, p 1042–1047CrossRef
14.
Zurück zum Zitat F. Ozturk, H. Pekel, and H. Halkaci, The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures, J. Mater. Eng. Perform., 2011, 20, p 77–81CrossRef F. Ozturk, H. Pekel, and H. Halkaci, The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures, J. Mater. Eng. Perform., 2011, 20, p 77–81CrossRef
15.
Zurück zum Zitat M. Garware, G.T. Kridli, and P.K. Mallick, Tensile and Fatigue Behavior of Friction-Stir Welded Tailor-Welded Blank of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2010, 19, p 1161–1171CrossRef M. Garware, G.T. Kridli, and P.K. Mallick, Tensile and Fatigue Behavior of Friction-Stir Welded Tailor-Welded Blank of Aluminum Alloy 5754, J. Mater. Eng. Perform., 2010, 19, p 1161–1171CrossRef
16.
Zurück zum Zitat A. Bhandakkar, R.C. Prasad, and S.M.L. Sastry, Fracture Toughness of AA2024 Aluminum Fly Ash Metal Matrix Composites, Int. J. Comput. Mater., 2014, 4, p 108–124 A. Bhandakkar, R.C. Prasad, and S.M.L. Sastry, Fracture Toughness of AA2024 Aluminum Fly Ash Metal Matrix Composites, Int. J. Comput. Mater., 2014, 4, p 108–124
17.
Zurück zum Zitat Y. Jia and Y. Bai, Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531CrossRef Y. Jia and Y. Bai, Ductile Fracture Prediction for Metal Sheets Using All-Strain-Based Anisotropic eMMC Model, Int. J. Mech. Sci., 2016, 115, p 516–531CrossRef
18.
Zurück zum Zitat H. Li, M. Fu, J. Lu, and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast, 2011, 27, p 147–180CrossRef H. Li, M. Fu, J. Lu, and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast, 2011, 27, p 147–180CrossRef
19.
Zurück zum Zitat C. Zhang, L. Leotoing, D. Guines, and E. Ragneau, Experimental and Numerical Study on Effect of Forming Rate on AA5086 Sheet Formability, Mater. Sci. Eng. A, 2010, 527, p 967–972CrossRef C. Zhang, L. Leotoing, D. Guines, and E. Ragneau, Experimental and Numerical Study on Effect of Forming Rate on AA5086 Sheet Formability, Mater. Sci. Eng. A, 2010, 527, p 967–972CrossRef
20.
Zurück zum Zitat T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef T. Belytschko and T. Black, Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer. Methods Eng., 1999, 45, p 601–620CrossRef
21.
Zurück zum Zitat N. Moës and T. Belytschko, Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 2002, 69, p 813–833CrossRef N. Moës and T. Belytschko, Extended Finite Element Method for Cohesive Crack Growth, Eng. Fract. Mech., 2002, 69, p 813–833CrossRef
22.
Zurück zum Zitat N. Sukumar, N. Moës, and B. Moran, Extended Finite Element Method for Three-Dimensional Crack Modelling, Int. J. Numer. Methods Eng., 2000, 48, p 1549–1570CrossRef N. Sukumar, N. Moës, and B. Moran, Extended Finite Element Method for Three-Dimensional Crack Modelling, Int. J. Numer. Methods Eng., 2000, 48, p 1549–1570CrossRef
23.
Zurück zum Zitat E. Giner, N. Sukumar, J. Tarancon, and F. Fuenmayor, An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech., 2009, 76, p 347–368CrossRef E. Giner, N. Sukumar, J. Tarancon, and F. Fuenmayor, An Abaqus Implementation of the Extended Finite Element Method, Eng. Fract. Mech., 2009, 76, p 347–368CrossRef
24.
Zurück zum Zitat P. Das, I.V. Singh, and R. Jayaganthan, An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy, J. Mater. Eng. Perform., 2012, 21, p 1167–1181CrossRef P. Das, I.V. Singh, and R. Jayaganthan, An Experimental Evaluation of Material Properties and Fracture Simulation of Cryorolled 7075 Al Alloy, J. Mater. Eng. Perform., 2012, 21, p 1167–1181CrossRef
25.
Zurück zum Zitat ASTM Standard E8/E8 M, 2009, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken PA, 2009 ASTM Standard E8/E8 M, 2009, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken PA, 2009
26.
Zurück zum Zitat ASTM Standard E23, 2007, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2007 ASTM Standard E23, 2007, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2007
27.
Zurück zum Zitat ASTM Standard E92, 2007, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2009 ASTM Standard E92, 2007, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, PA, 2009
28.
Zurück zum Zitat ASTM Standard E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K 1C of Metallic Material, ASTM International, West Conshohocken PA, 2012 ASTM Standard E399-12, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K 1C of Metallic Material, ASTM International, West Conshohocken PA, 2012
29.
Zurück zum Zitat G.A. Clarke, W.R. Andrews, P.C. Paris and D.W. Schmidt, Single specimen tests for JIC determination, Mechanisms of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, p 27–42 G.A. Clarke, W.R. Andrews, P.C. Paris and D.W. Schmidt, Single specimen tests for JIC determination, Mechanisms of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, p 27–42
30.
Zurück zum Zitat J.W. Hutchinson and P.C. Paris, Stability Analysis of J-controlled Crack Growth, Elastic–Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, 1979, p 37–64 J.W. Hutchinson and P.C. Paris, Stability Analysis of J-controlled Crack Growth, Elastic–Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, 1979, p 37–64
31.
Zurück zum Zitat J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35, p 379–386CrossRef J.R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 1968, 35, p 379–386CrossRef
32.
Zurück zum Zitat ASTM Standard E1820-15, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2015 ASTM Standard E1820-15, Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2015
33.
Zurück zum Zitat H. Pathak, A. Singh, I. Singh, and S. Yadav, A Simple and Efficient XFEM Approach for 3-D Cracks Simulations, Int. J. Fract., 2013, 181, p 189–208CrossRef H. Pathak, A. Singh, I. Singh, and S. Yadav, A Simple and Efficient XFEM Approach for 3-D Cracks Simulations, Int. J. Fract., 2013, 181, p 189–208CrossRef
34.
Zurück zum Zitat W. Ramberg, and W.R.W. Osgood, Description of Stress-strain Curves by Three Parameters. Natl. Advis. Comm. Aeronaut., Technical Note No. 902, 1943. W. Ramberg, and W.R.W. Osgood, Description of Stress-strain Curves by Three Parameters. Natl. Advis. Comm. Aeronaut., Technical Note No. 902, 1943.
35.
Zurück zum Zitat J. Shi, D. Chopp, J. Lua, N. Sukumar, and T. Belytschkod, Abaqus Implementation of Extended Finite Element Method Using a Level Set Representation for Three-Dimensional Fatigue Crack Growth and Life Predictions, Eng. Fract. Mech., 2010, 77, p 2840–2863CrossRef J. Shi, D. Chopp, J. Lua, N. Sukumar, and T. Belytschkod, Abaqus Implementation of Extended Finite Element Method Using a Level Set Representation for Three-Dimensional Fatigue Crack Growth and Life Predictions, Eng. Fract. Mech., 2010, 77, p 2840–2863CrossRef
36.
Zurück zum Zitat ABAQUS Analysis User’s Manual (Version 6.12), United States of America ABAQUS Inc., 2012 ABAQUS Analysis User’s Manual (Version 6.12), United States of America ABAQUS Inc., 2012
37.
Zurück zum Zitat S. Kumar, I.V. Singh, and B.K. Mishra, XFEM Simulation of Stable Crack Growth Using J-R Curve Under Finite Strain Plasticity, Int. J. Mech. Mater. Des., 2014, 10, p 165–177CrossRef S. Kumar, I.V. Singh, and B.K. Mishra, XFEM Simulation of Stable Crack Growth Using J-R Curve Under Finite Strain Plasticity, Int. J. Mech. Mater. Des., 2014, 10, p 165–177CrossRef
38.
Zurück zum Zitat M. Tajally, Z. Huda, and H. Masjuki, A Comparative Analysis of Tensile and Impact-Toughness Behavior of Cold-Worked and Annealed 7075 Aluminum Alloy, Int. J. Impact Eng, 2010, 37, p 425–432CrossRef M. Tajally, Z. Huda, and H. Masjuki, A Comparative Analysis of Tensile and Impact-Toughness Behavior of Cold-Worked and Annealed 7075 Aluminum Alloy, Int. J. Impact Eng, 2010, 37, p 425–432CrossRef
39.
Zurück zum Zitat Z. Yang, An Energy-Based Crack Growth Criterion for Modelling Elastic–Plastic Ductile Fracture, Mech. Res. Commun., 2005, 32, p 514–524CrossRef Z. Yang, An Energy-Based Crack Growth Criterion for Modelling Elastic–Plastic Ductile Fracture, Mech. Res. Commun., 2005, 32, p 514–524CrossRef
40.
Zurück zum Zitat J. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International, Russell, 2000 J. Kaufman, Introduction to Aluminum Alloys and Tempers, ASM International, Russell, 2000
41.
Zurück zum Zitat R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloydb, and M. Finnb, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng, 2005, 32, p 541–560CrossRef R. Smerd, S. Winkler, C. Salisbury, M. Worswick, D. Lloydb, and M. Finnb, High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet, Int. J. Impact Eng, 2005, 32, p 541–560CrossRef
42.
Zurück zum Zitat ASTM Standard E647-15, Standard Test Method for Measurement of Fatigue Crack growth Rates, ASTM International, West Conshohocken, PA, 2015 ASTM Standard E647-15, Standard Test Method for Measurement of Fatigue Crack growth Rates, ASTM International, West Conshohocken, PA, 2015
43.
Zurück zum Zitat P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85, p 528–533CrossRef P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85, p 528–533CrossRef
44.
Zurück zum Zitat B.F. Jogi, P.K. Brahmankar, V.S. Nanda, and R.C. Prasad, Some Studies on Fatigue Crack Growth Rate of Aluminum Alloy 6061, J. Mater. Process. Technol., 2007, 201, p 380–384CrossRef B.F. Jogi, P.K. Brahmankar, V.S. Nanda, and R.C. Prasad, Some Studies on Fatigue Crack Growth Rate of Aluminum Alloy 6061, J. Mater. Process. Technol., 2007, 201, p 380–384CrossRef
45.
Zurück zum Zitat S. Cravero and C. Ruggieri, Estimation Procedure of J-resistance Curves for SE (T) Fracture Specimens Using Unloading Compliance, Eng. Fract. Mech., 2007, 74, p 2735–2757CrossRef S. Cravero and C. Ruggieri, Estimation Procedure of J-resistance Curves for SE (T) Fracture Specimens Using Unloading Compliance, Eng. Fract. Mech., 2007, 74, p 2735–2757CrossRef
46.
Zurück zum Zitat X.K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46CrossRef X.K. Zhu and J.A. Joyce, Review of Fracture Toughness (G, K, J, CTOD, CTOA) Testing and Standardization, Eng. Fract. Mech., 2012, 85, p 1–46CrossRef
47.
Zurück zum Zitat S. Goel, N. Kumar, D. Fuloria, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM, J. Mater. Eng. Perform., 2016, 25, p 4046–4058CrossRef S. Goel, N. Kumar, D. Fuloria, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, and N. Saibaba, Evaluating Fracture Toughness of Rolled Zircaloy-2 at Different Temperatures Using XFEM, J. Mater. Eng. Perform., 2016, 25, p 4046–4058CrossRef
48.
Zurück zum Zitat C. Menzemer and T. Srivatsan, The Quasi-Static Fracture Behavior of Aluminum Alloy 5083, Mater. Lett., 1999, 38, p 317–320CrossRef C. Menzemer and T. Srivatsan, The Quasi-Static Fracture Behavior of Aluminum Alloy 5083, Mater. Lett., 1999, 38, p 317–320CrossRef
49.
Zurück zum Zitat N. Alexopoulos, Impact Properties of the Aircraft Cast Aluminium Alloy Al-7Si0. 6 Mg (A357), EPJ Web Conf., 2010 N. Alexopoulos, Impact Properties of the Aircraft Cast Aluminium Alloy Al-7Si0. 6 Mg (A357), EPJ Web Conf., 2010
Metadaten
Titel
Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754
verfasst von
Pankaj Kumar
Akhilendra Singh
Publikationsdatum
22.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2802-8

Weitere Artikel der Ausgabe 10/2017

Journal of Materials Engineering and Performance 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.