Skip to main content
Erschienen in: Microsystem Technologies 1/2016

02.08.2015 | Technical Paper

Investigation of mechanical properties and internal structure of novel ionic double-nework gels and comparison with conventional hydrogels

verfasst von: Kumkum Ahmed, Yosuke Watanabe, Tomoya Higashihara, Hiroyuki Arafune, Toshio Kamijo, Takashi Morinaga, Takaya Sato, Masato Makino, Masaru Kawakami, Hidemitsu Furukawa

Erschienen in: Microsystem Technologies | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gels are an important class of soft and wet materials having superior properties with diverse applications in tissue engineering, bio-medical engineering, and electrochemistry. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials and investigate their internal structure to ensure the best implementation to any suitable fields. Among many types of gels, ionic gels made from ionic liquids (ILs) will be possibly used for diverse applications in electrochemical devices as sensors, actuators, batteries and in the field of tribology. ILs are characterized by many unique physico-chemical properties which make them a potential candidate for gel materials. In the present work a novel approach for preparing Ionic double-network gels (iDN gels) using IL have been synthesized utilizing photo-polymerization process. A hydrophobic monomer methyl methacrylate has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide has been used as a second network. The resulting iDN gels show transparency, flexibility and good mechanical toughness. An attempt to determine the mesh size of the iDN gels has been made for the first time to understand the internal structure of the ionic liquid based gels by scanning microscopic, light scattering. Three types of crosslinking densities of the iDN gels were experimentally determined from the size of internal structure, solvent content and Young’s modulus. By comparing the three mesh densities, the relation between the network structure and mechanical properties of the gels is discussed. We compared the crosslinking densities of the iDN gels and conventional hydrogels to understand the network structure of the iDN gels and discussed its difference of structural behavior from that of hydrogels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Furukawa H, Horie K, Nozaki R, Okada M (2003) Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering. Phys Rev E 68:031406-1-14 Furukawa H, Horie K, Nozaki R, Okada M (2003) Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering. Phys Rev E 68:031406-1-14
Zurück zum Zitat Furukawa H, Hidema R, Takada H, Amano Y, Kabir MH, Gong J (2013) Smart hydrogels developed with inter-crosslinking network (ICN) structure. J Solid Mech Mater Eng 7(2):245–250CrossRef Furukawa H, Hidema R, Takada H, Amano Y, Kabir MH, Gong J (2013) Smart hydrogels developed with inter-crosslinking network (ICN) structure. J Solid Mech Mater Eng 7(2):245–250CrossRef
Zurück zum Zitat Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef
Zurück zum Zitat Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod. Process 1:223–226 Holbrey JD, Seddon KR (1999) Ionic liquids. Clean Prod. Process 1:223–226
Zurück zum Zitat Huang M, Furukawa H, Tanaka Y, Nakajima T, Osada Y, Gong JP (2007) Importance of entanglement between first and second components in high-strength double network gels. Macromolecules 40:6658–6664CrossRef Huang M, Furukawa H, Tanaka Y, Nakajima T, Osada Y, Gong JP (2007) Importance of entanglement between first and second components in high-strength double network gels. Macromolecules 40:6658–6664CrossRef
Zurück zum Zitat Morita M, Shirai T, Yoshimoto N, Ishikawa M (2005) Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt. J Power Sources 139:351–355CrossRef Morita M, Shirai T, Yoshimoto N, Ishikawa M (2005) Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt. J Power Sources 139:351–355CrossRef
Zurück zum Zitat Okeyoshi K, Abe T, Noguchi Y, Furukawa H, Yoshida R (2008) Shrinking behavior of surfactant-grafted thermosensitive gels and the mechanism of rapid shrinking. Macromol Rapid Commun 29:897–900CrossRef Okeyoshi K, Abe T, Noguchi Y, Furukawa H, Yoshida R (2008) Shrinking behavior of surfactant-grafted thermosensitive gels and the mechanism of rapid shrinking. Macromol Rapid Commun 29:897–900CrossRef
Zurück zum Zitat Pandey G, Kumar PY, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for surpercapacitor application. Indian J Chem 49A:743–751 Pandey G, Kumar PY, Hashmi SA (2010) Ionic liquid incorporated polymer electrolytes for surpercapacitor application. Indian J Chem 49A:743–751
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
Zurück zum Zitat Rubinstein M, Colby R (2003) Polymer physics. Oxford University Press, Oxford Rubinstein M, Colby R (2003) Polymer physics. Oxford University Press, Oxford
Zurück zum Zitat Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”. Electrochim Acta 49:3603–3611CrossRef Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”. Electrochim Acta 49:3603–3611CrossRef
Zurück zum Zitat Sato T, Marukane S, Narutomi T, Akaob T (2007) High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite”. J Power Sources 164:390–396CrossRef Sato T, Marukane S, Narutomi T, Akaob T (2007) High rate performance of a lithium polymer battery using a novel ionic liquid polymer composite”. J Power Sources 164:390–396CrossRef
Zurück zum Zitat Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365CrossRef Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365CrossRef
Zurück zum Zitat Sekhon SS, Park JS, Cho E, Yoon YG, Kim CS, Yamada K (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256–2265CrossRef Sekhon SS, Park JS, Cho E, Yoon YG, Kim CS, Yamada K (2006) Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells. J Mater Chem 16:2256–2265CrossRef
Zurück zum Zitat Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983CrossRef Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983CrossRef
Zurück zum Zitat Takada G, Hidema R, Furukawa H (2012a) Ultrahigh ductile gels developed by inter cross-linking network (ICN). J Solid Mech Mater Eng 6(2):169–177CrossRef Takada G, Hidema R, Furukawa H (2012a) Ultrahigh ductile gels developed by inter cross-linking network (ICN). J Solid Mech Mater Eng 6(2):169–177CrossRef
Zurück zum Zitat Takada G, Hidema R, Furukawa H (2012b) Ultrahigh ductile gels having inter-crosslinking network (ICN) structuree”. J Surf Sci Nanotech 10:346–350CrossRef Takada G, Hidema R, Furukawa H (2012b) Ultrahigh ductile gels having inter-crosslinking network (ICN) structuree”. J Surf Sci Nanotech 10:346–350CrossRef
Zurück zum Zitat Wasserscheid P, Keim W (2000) Ionic liquids—new solutions for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef Wasserscheid P, Keim W (2000) Ionic liquids—new solutions for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef
Zurück zum Zitat Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRef Welton T (1999) Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRef
Metadaten
Titel
Investigation of mechanical properties and internal structure of novel ionic double-nework gels and comparison with conventional hydrogels
verfasst von
Kumkum Ahmed
Yosuke Watanabe
Tomoya Higashihara
Hiroyuki Arafune
Toshio Kamijo
Takashi Morinaga
Takaya Sato
Masato Makino
Masaru Kawakami
Hidemitsu Furukawa
Publikationsdatum
02.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2630-4

Weitere Artikel der Ausgabe 1/2016

Microsystem Technologies 1/2016 Zur Ausgabe

Neuer Inhalt