Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2018

26.02.2018

Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

verfasst von: Dipen Kumar Rajak, L. A. Kumaraswamidhas, S. Das

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress–strain curves, which were then compared with each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.M. Holdridge, V.N. Shankar, and G.F. Ulfarsson, The Crash Severity Impacts of Fixed Roadside Objects, J. Safety Res., 2005, 36(2), p 139–147CrossRef J.M. Holdridge, V.N. Shankar, and G.F. Ulfarsson, The Crash Severity Impacts of Fixed Roadside Objects, J. Safety Res., 2005, 36(2), p 139–147CrossRef
2.
Zurück zum Zitat L. Guo and J. Yu, Dynamic Bending Response of Double Cylindrical Tubes Filled with Aluminum Foam, Int. J. Impact Eng, 2011, 238(2), p 85–94CrossRef L. Guo and J. Yu, Dynamic Bending Response of Double Cylindrical Tubes Filled with Aluminum Foam, Int. J. Impact Eng, 2011, 238(2), p 85–94CrossRef
3.
Zurück zum Zitat M.M. Abedi, A. Niknejad, G.H. Liaghat, and M.Z. Nejad, Theoretical and Experimental Study on Empty and Foam-Filled Columns with Square and Rectangular Cross Section Under Axial Compression, Int. J. Mech. Sci., 2012, 65(1), p 134–146CrossRef M.M. Abedi, A. Niknejad, G.H. Liaghat, and M.Z. Nejad, Theoretical and Experimental Study on Empty and Foam-Filled Columns with Square and Rectangular Cross Section Under Axial Compression, Int. J. Mech. Sci., 2012, 65(1), p 134–146CrossRef
4.
Zurück zum Zitat A. Darvizeh, M. Darvizeh, R. Ansari, and A. Meshkinzar, Effect of Low Density, Low Strength Polyurethane Foam on The Energy Absorption Characteristics of Circumferentially Grooved Thick-Walled Circular Tubes, Thin Wall. Struct., 2013, 71, p 81–90CrossRef A. Darvizeh, M. Darvizeh, R. Ansari, and A. Meshkinzar, Effect of Low Density, Low Strength Polyurethane Foam on The Energy Absorption Characteristics of Circumferentially Grooved Thick-Walled Circular Tubes, Thin Wall. Struct., 2013, 71, p 81–90CrossRef
5.
Zurück zum Zitat A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Optimum Design for Energy Absorption of Square Aluminium Columns with Aluminium Foam Filler, Int. J. Mech. Sci., 2001, 43(1), p 153–176CrossRef A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Optimum Design for Energy Absorption of Square Aluminium Columns with Aluminium Foam Filler, Int. J. Mech. Sci., 2001, 43(1), p 153–176CrossRef
6.
Zurück zum Zitat M. Guden and H. Kavi, Quasi-Static Axial Compression Behaviour of Constraint Hexagonal and Square-Packed Empty and Aluminum Foam-Filled Aluminum Multi-Tubes, Thin Wall. Struct., 2006, 44(7), p 739–750CrossRef M. Guden and H. Kavi, Quasi-Static Axial Compression Behaviour of Constraint Hexagonal and Square-Packed Empty and Aluminum Foam-Filled Aluminum Multi-Tubes, Thin Wall. Struct., 2006, 44(7), p 739–750CrossRef
7.
Zurück zum Zitat A.G. Hanssen, M. Langseth, and O.S. Hopperstad, The Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(5), p 475–507CrossRef A.G. Hanssen, M. Langseth, and O.S. Hopperstad, The Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(5), p 475–507CrossRef
8.
Zurück zum Zitat A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(4), p 347–383CrossRef A.G. Hanssen, M. Langseth, and O.S. Hopperstad, Static and Dynamic Crushing of Square Aluminium Extrusions with Aluminium Foam Filler, Int. J. Impact Eng, 2000, 24(4), p 347–383CrossRef
9.
Zurück zum Zitat J.M. Babbage and P.K. Mallick, Static Axial Crush Performance of Unfilled and Foam-Filled Aluminium–Composite Hybrid Tubes, Compos. Struct., 2005, 70(2), p 177–184CrossRef J.M. Babbage and P.K. Mallick, Static Axial Crush Performance of Unfilled and Foam-Filled Aluminium–Composite Hybrid Tubes, Compos. Struct., 2005, 70(2), p 177–184CrossRef
10.
Zurück zum Zitat S.R. Guillow, G. Lu, and R.H. Grzebieta, Quasi-Static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43, p 2103–2123CrossRef S.R. Guillow, G. Lu, and R.H. Grzebieta, Quasi-Static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci., 2001, 43, p 2103–2123CrossRef
11.
Zurück zum Zitat T.Y. Reddy and R.J. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng, 1988, 7, p 151–166CrossRef T.Y. Reddy and R.J. Wall, Axial Compression of Foam-Filled Thin-Walled Circular Tubes, Int. J. Impact Eng, 1988, 7, p 151–166CrossRef
12.
Zurück zum Zitat A.G. Mamalis, D.E. Manolakos, G.A. Demosthenous, and W. Johnson, Axial Plastic Collapse of Thin Bi-Material Tubes as Energy Dissipating Systems, Int. J. Impact Eng, 1991, 11, p 185–196CrossRef A.G. Mamalis, D.E. Manolakos, G.A. Demosthenous, and W. Johnson, Axial Plastic Collapse of Thin Bi-Material Tubes as Energy Dissipating Systems, Int. J. Impact Eng, 1991, 11, p 185–196CrossRef
13.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation, and Characterization of Aluminium Alloy Foams with TiH2 as Foaming Agent, Mater. Sci. Technol., 2016, 32(13), p 1338–1345CrossRef D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation, and Characterization of Aluminium Alloy Foams with TiH2 as Foaming Agent, Mater. Sci. Technol., 2016, 32(13), p 1338–1345CrossRef
14.
Zurück zum Zitat L.A. Kumaraswamidhas, D.K. Rajak, and S. Das, An Investigation on the Axial Deformation Behaviour of Thin-Wall Unfilled and Filled the Tube with Aluminium Alloy (Al–Si7 Mg) Foam-Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25(8), p 3430–3438CrossRef L.A. Kumaraswamidhas, D.K. Rajak, and S. Das, An Investigation on the Axial Deformation Behaviour of Thin-Wall Unfilled and Filled the Tube with Aluminium Alloy (Al–Si7 Mg) Foam-Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25(8), p 3430–3438CrossRef
15.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, An Energy Absorption Behaviour of Foam Filled Structures, Proc. Mater. Sci., 2014, 5, p 164–172CrossRef D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, An Energy Absorption Behaviour of Foam Filled Structures, Proc. Mater. Sci., 2014, 5, p 164–172CrossRef
16.
Zurück zum Zitat G.J. Davies and S. Zhen, Metallic Foams: Their Production, Properties and Applications, J. Mater. Sci., 1983, 18(7), p 1899–1911CrossRef G.J. Davies and S. Zhen, Metallic Foams: Their Production, Properties and Applications, J. Mater. Sci., 1983, 18(7), p 1899–1911CrossRef
17.
Zurück zum Zitat L.J. Gibson, Metal Matrix Composite, Handbook, 3rd edn. Kelly Anthony, Zweben Carl, 2000, p 821 L.J. Gibson, Metal Matrix Composite, Handbook, 3rd edn. Kelly Anthony, Zweben Carl, 2000, p 821
18.
Zurück zum Zitat J. Banhart, Manufacturing Routes for Metallic Foams, J. Metal., 2000, 12, p 22–27 J. Banhart, Manufacturing Routes for Metallic Foams, J. Metal., 2000, 12, p 22–27
19.
Zurück zum Zitat V. Gergely and T.W. Clyne, Drainage in Standing Liquid Metal Foams: Modelling and Experimental Observations, Acta Mater., 2004, 52, p 3047–3058CrossRef V. Gergely and T.W. Clyne, Drainage in Standing Liquid Metal Foams: Modelling and Experimental Observations, Acta Mater., 2004, 52, p 3047–3058CrossRef
20.
Zurück zum Zitat C. Korner and R.F. Singer, Processing of Metal Foams—Challenges and Opportunities, Adv. Eng. Mater., 2000, 2(4), p 159–165CrossRef C. Korner and R.F. Singer, Processing of Metal Foams—Challenges and Opportunities, Adv. Eng. Mater., 2000, 2(4), p 159–165CrossRef
21.
Zurück zum Zitat I. Duarte, J. Mascarenhas, A. Ferreira, and J. Banhart, The Evolution of Morphology and Kinetics During the Foaming Process of Aluminium, Key Eng. Mater., 2002, 2320–232, p 96–101CrossRef I. Duarte, J. Mascarenhas, A. Ferreira, and J. Banhart, The Evolution of Morphology and Kinetics During the Foaming Process of Aluminium, Key Eng. Mater., 2002, 2320–232, p 96–101CrossRef
22.
Zurück zum Zitat A.E. Simone and L.J. Gibson, Aluminium Foams Produced by Liquid-State Processes, Acta Mater., 1998, 46(9), p 3109–3123CrossRef A.E. Simone and L.J. Gibson, Aluminium Foams Produced by Liquid-State Processes, Acta Mater., 1998, 46(9), p 3109–3123CrossRef
23.
Zurück zum Zitat Y. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, ALPORAS Aluminium Foam: Production Process, Properties, and Applications, Adv. Eng. Mater., 2002, 2(4), p 179–183CrossRef Y. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, ALPORAS Aluminium Foam: Production Process, Properties, and Applications, Adv. Eng. Mater., 2002, 2(4), p 179–183CrossRef
24.
Zurück zum Zitat W. Deqing and S. Ziyuan, Effect of Ceramic Particles on Cell Size and a Wall Thickness of Aluminium Foam, Mater. Sci. Eng., 2003, 361, p 45–49CrossRef W. Deqing and S. Ziyuan, Effect of Ceramic Particles on Cell Size and a Wall Thickness of Aluminium Foam, Mater. Sci. Eng., 2003, 361, p 45–49CrossRef
25.
Zurück zum Zitat B. Kritzt, U. Martin, U. Mosler, Handbook of Cellular Metals: Production, Processing, Application, 2002, p 130 B. Kritzt, U. Martin, U. Mosler, Handbook of Cellular Metals: Production, Processing, Application, 2002, p 130
26.
Zurück zum Zitat O. Prakash, H. Sang, and J.D. Embury, Structure and Properties of the Al–SiC Foam, Mater. Sci. Eng., A, 1995, 199, p 195–203CrossRef O. Prakash, H. Sang, and J.D. Embury, Structure and Properties of the Al–SiC Foam, Mater. Sci. Eng., A, 1995, 199, p 195–203CrossRef
27.
Zurück zum Zitat S.W. Ip, Y. Wang, and J.D. Toguri, Aluminium Foam Stabilization by Solid Particles, Can. Matall. Q., 1999, 38(1), p 81–92CrossRef S.W. Ip, Y. Wang, and J.D. Toguri, Aluminium Foam Stabilization by Solid Particles, Can. Matall. Q., 1999, 38(1), p 81–92CrossRef
28.
Zurück zum Zitat A. Haibel, A. Rack, and J. Banhart, Why are Metal Foams Stable, Appl. Phys. Lett., 2006, 89(15), p 154102CrossRef A. Haibel, A. Rack, and J. Banhart, Why are Metal Foams Stable, Appl. Phys. Lett., 2006, 89(15), p 154102CrossRef
29.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S.S. Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225CrossRef D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S.S. Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225CrossRef
30.
Zurück zum Zitat D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Energy Absorption Capacity of Empty and Foam Filled Mild Steel Tube Under Low Strain Rate at Room Temperature, Adv. Mater. Lett., 2015, 6(6), p 548–553CrossRef D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Energy Absorption Capacity of Empty and Foam Filled Mild Steel Tube Under Low Strain Rate at Room Temperature, Adv. Mater. Lett., 2015, 6(6), p 548–553CrossRef
Metadaten
Titel
Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load
verfasst von
Dipen Kumar Rajak
L. A. Kumaraswamidhas
S. Das
Publikationsdatum
26.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3241-x

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Engineering and Performance 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.