Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

07.09.2015 | Original Article | Ausgabe 2/2017

Neural Computing and Applications 2/2017

Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters

Zeitschrift:
Neural Computing and Applications > Ausgabe 2/2017
Autoren:
Şener Karabulut, Halil Karakoç

Abstract

In the present study, aluminum alloy 7075 (Al7075)-based open-cell silicon carbide (SiC) foam composite was fabricated and the machinability of both Al7075 and the open-cell SiC foam Al metal matrix composite was investigated during milling using an uncoated carbide tool. The machining trials were conducted using the Taguchi L27 full-factorial orthogonal array, and the milling parameters were optimized for surface roughness. Analysis of variance was employed to determine the effect of the cutting variables on surface roughness. The experimental results were evaluated by signal-to-noise ratio, 3D surface graphs, artificial neural networks (ANNs) and main effect graphs. The analysis results show that the feed rate was the most significant milling parameter affecting surface roughness of both Al7075 and the open-cell SiC foam composite. Prediction models have been developed for the surface roughness through regression analysis and ANNs. Confirmation experiments were performed to identify the performance of mathematical models, and the surface roughness was predicted with a mean squared error equal to 1.6 and 0.24 % in the milling of Al7075 and open-cell SiC foam composite, respectively. The test result showed that the three-dimensional open-pore SiC foam network reinforcement was restricted the movement of the soft matrix and provided an acceptable surface quality in the milling of MMCs.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2017

Neural Computing and Applications 2/2017 Zur Ausgabe

Premium Partner

    Bildnachweise