Skip to main content
Erschienen in: Steel in Translation 11/2019

01.11.2019

Investigation of Two-Phase State of Fe–Cu Melts during Cooling in a Viscometer

verfasst von: M. R. Filonov, V. V. Sanin, Yu. A. Anikin, E. V. Kostitsyna, S. N. Vidineev

Erschienen in: Steel in Translation | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fe–Cu alloys can be characterized as a system with immiscible components (IC). This statement is based on a weak mutual solubility in the solid state. In addition, Fe–Cu system stratifies in the liquid state at low carbon content. Alloys with ICs have a simple phase composition of almost pure components, which determines a significant practical interest in these alloys. Manufacturers have technologically succeeded in achieving damping alloys of Fe–Cu–Pb system. With proper technological preparation, the final product can be obtained by combining the properties of pure alloy components in the fraction required for practical application. For example, diamagnetic copper has high electrical conductivity and thermal conductivity in Fe–Cu alloys, while ferromagnetic iron has enhanced strength characteristics compared to copper. When the alloy structure is organized in a certain way, a final product can be obtained with high electrical conductivity and thermal conductivity of copper, enhanced strength properties of iron, or a hard magnetic material with copper ductility. The studies of iron-copper alloys focused on the structural studies and measurements of service properties. At the same time, the dynamics of macro- and microstructure alloy formation were not analyzed. In the present studies, the macrostructure formation dynamics of the solid phase enriched with iron at the crystallization melt process during cooling was studied using high-temperature viscometry. Due to the effect of the melt-cooling rate on the size and morphology of crystallizing inclusions, as well as a significant amount of the two-phase area, special attention was paid to the thermophysical analysis of the measurement mode. Analysis of the reliability of the results obtained was made by the viscosity measurement method. The phase state of Fe–Cu system melts was investigated during cooling by changing the damping factor. The analysis of thermophysical processes occurring during measuring the damping factor was carried out. The measuring process of damping decrement takes place under quasi-equilibrium conditions and the cooling rate is close to zero. There are no temperature gradients, both in radius and in height. For compositions Fe50Cu50, Fe40Cu60, and Fe30Cu70, the precipitation dynamics of the solid phase was determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, X., Jiang, C., Zou, J., and Wang, X., Preparation and characterization of CuFe alloy ribbons, Rare Met. Mater. Eng., 2015, vol. 44, no 12, pp. 2949–2953.CrossRef Yang, X., Jiang, C., Zou, J., and Wang, X., Preparation and characterization of CuFe alloy ribbons, Rare Met. Mater. Eng., 2015, vol. 44, no 12, pp. 2949–2953.CrossRef
2.
Zurück zum Zitat Bachmaier, A., Kerber, M., Setman, D., and Pippan, R., The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion, Acta Mater., 2012, vol. 60, no 3, pp. 860–871.CrossRef Bachmaier, A., Kerber, M., Setman, D., and Pippan, R., The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion, Acta Mater., 2012, vol. 60, no 3, pp. 860–871.CrossRef
3.
Zurück zum Zitat Alami, A.H., Alketbi, A., and Almheiri, M., Synthesis and microstructural and optical characterization of Fe–Cu metastable alloys for enhanced solar thermal absorption, Energy Procedia, 2015, vol. 75, pp. 410–416.CrossRef Alami, A.H., Alketbi, A., and Almheiri, M., Synthesis and microstructural and optical characterization of Fe–Cu metastable alloys for enhanced solar thermal absorption, Energy Procedia, 2015, vol. 75, pp. 410–416.CrossRef
4.
Zurück zum Zitat Lucas, F.M., Trindade, B., Costa, B.F.O., and Le Caër, G., Mechanical alloying of Fe–Cu alloys from as-received and premilled elemental powder mixtures, Key Eng. Mater., 2002, vol. 230-232, pp. 631–634.CrossRef Lucas, F.M., Trindade, B., Costa, B.F.O., and Le Caër, G., Mechanical alloying of Fe–Cu alloys from as-received and premilled elemental powder mixtures, Key Eng. Mater., 2002, vol. 230-232, pp. 631–634.CrossRef
5.
Zurück zum Zitat Alami, A.H., Zhang, D., Aoka, C., and Abed, J., Influence of magnetic field on the mesoporous structure of Fe–Cu compounds in dye-sensitized photovoltaic cells, Energy Procedia, 2016, vol. 65, pp. 389–398. Alami, A.H., Zhang, D., Aoka, C., and Abed, J., Influence of magnetic field on the mesoporous structure of Fe–Cu compounds in dye-sensitized photovoltaic cells, Energy Procedia, 2016, vol. 65, pp. 389–398.
6.
Zurück zum Zitat Barthem, V.M., Noce, R.D., Mocedo, W.A., and Givord, D., Magnetic properties of electrodeposited Fe-poor Fe–Cu alloys, Braz. J. Phys., 2009, vol. 39, no. 1, pp. 178–185.CrossRef Barthem, V.M., Noce, R.D., Mocedo, W.A., and Givord, D., Magnetic properties of electrodeposited Fe-poor Fe–Cu alloys, Braz. J. Phys., 2009, vol. 39, no. 1, pp. 178–185.CrossRef
7.
Zurück zum Zitat Blackstok, J.J. and Ackland, G.J., Phase transitions of copper precipitates in Fe–Cu alloys, Philos. Mag. A, 2001, vol. 81, pp. 2127–2148.CrossRef Blackstok, J.J. and Ackland, G.J., Phase transitions of copper precipitates in Fe–Cu alloys, Philos. Mag. A, 2001, vol. 81, pp. 2127–2148.CrossRef
8.
Zurück zum Zitat Annamalai, R., Upadhyaya, A., and Agrawal, D., An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bull. Mater. Sci., 2013, vol. 36, no. 3, pp. 447–456.CrossRef Annamalai, R., Upadhyaya, A., and Agrawal, D., An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bull. Mater. Sci., 2013, vol. 36, no. 3, pp. 447–456.CrossRef
9.
Zurück zum Zitat Liu, J.Z., van de Walle, A., Ghosh, G., and Asta, M., Structure, energetics, and mechanical stability of Fe–Cu BCC alloys from first-principles calculations, Phys. Rev. B, 2005, vol. 72, no. 14, pp. 144109.CrossRef Liu, J.Z., van de Walle, A., Ghosh, G., and Asta, M., Structure, energetics, and mechanical stability of Fe–Cu BCC alloys from first-principles calculations, Phys. Rev. B, 2005, vol. 72, no. 14, pp. 144109.CrossRef
10.
Zurück zum Zitat Noce, R.D., Gomes, O.D.M., de Magalhães, S.D., Wolf, W., et al., Magnetic properties of Fe–Cu alloys prepared by pulsed electrodeposition, J. Appl. Phys., 2009, vol. 106, no. 9, p. 093907.CrossRef Noce, R.D., Gomes, O.D.M., de Magalhães, S.D., Wolf, W., et al., Magnetic properties of Fe–Cu alloys prepared by pulsed electrodeposition, J. Appl. Phys., 2009, vol. 106, no. 9, p. 093907.CrossRef
11.
Zurück zum Zitat Mashimo, T., Huang, X., Fan, X., Koyama, K., and Motokawa, M., Slater-Pauling curve of Fe–Cu solid solution alloys, Phys. Rev. B, 2002, vol. 66, no. 13, p. 132407.CrossRef Mashimo, T., Huang, X., Fan, X., Koyama, K., and Motokawa, M., Slater-Pauling curve of Fe–Cu solid solution alloys, Phys. Rev. B, 2002, vol. 66, no. 13, p. 132407.CrossRef
12.
Zurück zum Zitat Ursev, V.N., Mirzaev, D.A., and Yakovleva, I.L., Transformation of austenite in Fe–Cu alloys. I: Kinetics of the transformation, Phys. Met. Metallogr., 2008, vol. 105, no 3, pp. 298–304. Ursev, V.N., Mirzaev, D.A., and Yakovleva, I.L., Transformation of austenite in Fe–Cu alloys. I: Kinetics of the transformation, Phys. Met. Metallogr., 2008, vol. 105, no 3, pp. 298–304.
13.
Zurück zum Zitat Avraamov, Yu.S. and Shlyapin, A.D., Novye kompozitsionnye materialy na osnove nesmeshivayushchikhsya komponentov: poluchenie, struktura, svoistva (New Composite Materials Based on Immiscible Components: Production, Structure, and Properties), Moscow: Mosk. Gos. Ind. Univ., 1999. Avraamov, Yu.S. and Shlyapin, A.D., Novye kompozitsionnye materialy na osnove nesmeshivayushchikhsya komponentov: poluchenie, struktura, svoistva (New Composite Materials Based on Immiscible Components: Production, Structure, and Properties), Moscow: Mosk. Gos. Ind. Univ., 1999.
14.
Zurück zum Zitat Nayan, N., Narayana Murty, S.V.S., Jha, A.K., Pant, B., Sharma, S.C., George, K.M., and Sastry, G.V.S., Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique, Mater. Sci. Eng., A, 2013, vol. 576, pp. 21–28.CrossRef Nayan, N., Narayana Murty, S.V.S., Jha, A.K., Pant, B., Sharma, S.C., George, K.M., and Sastry, G.V.S., Processing and characterization of Al–Cu–Li alloy AA2195 undergoing scale up production through the vacuum induction melting technique, Mater. Sci. Eng., A, 2013, vol. 576, pp. 21–28.CrossRef
15.
Zurück zum Zitat Mittler, T., Greß, T., Feistle, M., Krinninger, M., Hofmann, U., Riedle, J., Golle, R., and Volk, W., Fabrication and processing of metallurgically bonded copper bimetal sheets, J. Mater. Process. Technol., 2019, vol. 263, pp. 33–41.CrossRef Mittler, T., Greß, T., Feistle, M., Krinninger, M., Hofmann, U., Riedle, J., Golle, R., and Volk, W., Fabrication and processing of metallurgically bonded copper bimetal sheets, J. Mater. Process. Technol., 2019, vol. 263, pp. 33–41.CrossRef
16.
Zurück zum Zitat Sanin, V.V., Anikin, Yu.A., Yukhvid, V.I., and Filonov, M.R., Structural heredity of alloys produced by centrifugal SHS: influence of remelting temperature, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 210–214. Sanin, V.V., Anikin, Yu.A., Yukhvid, V.I., and Filonov, M.R., Structural heredity of alloys produced by centrifugal SHS: influence of remelting temperature, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 4, pp. 210–214.
17.
Zurück zum Zitat Sanin, V.V., Filonov, M. R., Yukhvid, V.I. and Anikin, Y.A., Structural investigation of 70Cu/30Fe based cast alloy obtained by combined use of centrifugal casting-SHS process and forging, MATEC Web Conf., 2017, vol. 129, pp. 1–4.CrossRef Sanin, V.V., Filonov, M. R., Yukhvid, V.I. and Anikin, Y.A., Structural investigation of 70Cu/30Fe based cast alloy obtained by combined use of centrifugal casting-SHS process and forging, MATEC Web Conf., 2017, vol. 129, pp. 1–4.CrossRef
18.
Zurück zum Zitat Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conduction), Moscow: Vysshaya shkola, 1966, 597 p. (In Russ.). Lykov, A.V., Teoriya teploprovodnosti (Theory of Heat Conduction), Moscow: Vysshaya shkola, 1966, 597 p. (In Russ.).
19.
Zurück zum Zitat Filonov, M.R., Anikin, Yu.A., and Levin, Yu.B., Teoreticheskie osnovy proizvodstva amorfnykh i nanokristallicheskikh splavov metodom sverkhbystroi zakalki (Theoretical Basis for the Production of Amorphous and Nanocrystalline Alloys by Ultrafast Quenching), Moscow: Mosk. Inst. Stali Splavov, 2006. Filonov, M.R., Anikin, Yu.A., and Levin, Yu.B., Teoreticheskie osnovy proizvodstva amorfnykh i nanokristallicheskikh splavov metodom sverkhbystroi zakalki (Theoretical Basis for the Production of Amorphous and Nanocrystalline Alloys by Ultrafast Quenching), Moscow: Mosk. Inst. Stali Splavov, 2006.
20.
Zurück zum Zitat Shvidkovskii, E.G., Nekotorye voprosy vyazkosti rasplavlennykh metallov (Viscosity of Molten Metals), Moscow: Gostekhizdat, 1955. Shvidkovskii, E.G., Nekotorye voprosy vyazkosti rasplavlennykh metallov (Viscosity of Molten Metals), Moscow: Gostekhizdat, 1955.
Metadaten
Titel
Investigation of Two-Phase State of Fe–Cu Melts during Cooling in a Viscometer
verfasst von
M. R. Filonov
V. V. Sanin
Yu. A. Anikin
E. V. Kostitsyna
S. N. Vidineev
Publikationsdatum
01.11.2019
Verlag
Pleiades Publishing
Erschienen in
Steel in Translation / Ausgabe 11/2019
Print ISSN: 0967-0912
Elektronische ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219110032

Weitere Artikel der Ausgabe 11/2019

Steel in Translation 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.