Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2015

01.01.2015

Investigation on relationship among calcination temperature, grain size, Mn valence and resistivity of Ca0.75Er0.25MnO3−δ powders

verfasst von: Yunjiao Li, Sue Hao, Fangwei Wang, Xinrong Liu, Xianwei Meng

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As is known that calcination temperature plays an important role on structure and properties of ceramic powders. In order to improve the conductivity of Er-doped CaMnO3 powders, we synthesized Ca0.75Er0.25MnO3−δ powders at different calcination temperatures from 900 to 1,100 °C by sol–gel auto-combustion method. The relationship among calcination temperature, grain size, Mn valence and resistivity of Ca0.75Er0.25MnO3−δ powders was investigated. The results show that the room temperature resistivity presents V-trend with increase in calcination temperature and reaches the minimum value of 0.8013 Ω m at 1,000 °C. X-ray diffraction patterns and the valence analysis illustrate that the grain size and Mn ions valence, which are related to the resistivity of Ca0.75Er0.25MnO3−δ powders, are also affected by calcination temperature. When the calcination temperature is 1,000 °C, Mn ions valence reaches the lowest point of 3.4766. Scanning electron microscope images demonstrate that the grain sizes of Ca0.75Er0.25MnO3−δ powders increase gradually with increase in calcination temperature. The grain size is moderate and uniform at 1,000 °C, which is an important factor to affect the conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Atsushi, H. Yasuhiro, I. Yoshiaki et al., Investigation of physical and electric properties of silver pastes as a binder for thermoelectric materials. Rev. Sci. Instrum. 76, 1–5 (2005) S. Atsushi, H. Yasuhiro, I. Yoshiaki et al., Investigation of physical and electric properties of silver pastes as a binder for thermoelectric materials. Rev. Sci. Instrum. 76, 1–5 (2005)
2.
Zurück zum Zitat H.J. Jiang, K.S. Moon, Y. Li et al., Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18(13), 1969–1973 (2006)CrossRef H.J. Jiang, K.S. Moon, Y. Li et al., Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18(13), 1969–1973 (2006)CrossRef
3.
Zurück zum Zitat J. Zhou, E. Sancaktar, Geometric effects on multilayer generic circuits fabricated using conductive epoxy/nickel adhesives. J. Adhes. Sci. Technol. 22(8–9), 947–956 (2008) J. Zhou, E. Sancaktar, Geometric effects on multilayer generic circuits fabricated using conductive epoxy/nickel adhesives. J. Adhes. Sci. Technol. 22(8–9), 947–956 (2008)
4.
Zurück zum Zitat N.H. Li, N. Hiroshi, N. Naohide et al., Effects of trace elements in copper fillers on the electrical properties of conductive adhesives. J. Electron. Mater. 39(1), 115–123 (2010)CrossRef N.H. Li, N. Hiroshi, N. Naohide et al., Effects of trace elements in copper fillers on the electrical properties of conductive adhesives. J. Electron. Mater. 39(1), 115–123 (2010)CrossRef
5.
Zurück zum Zitat T. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997)CrossRef T. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, 12685–12687 (1997)CrossRef
6.
Zurück zum Zitat K. Kurosaki, H. Muta, M. Uno, Thermoelectric properties of NaCo2O4. J. Alloy. Compd. 315, 234–236 (2001)CrossRef K. Kurosaki, H. Muta, M. Uno, Thermoelectric properties of NaCo2O4. J. Alloy. Compd. 315, 234–236 (2001)CrossRef
7.
Zurück zum Zitat A.C. Masset, C. Michel, A. Maignan et al., Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166–175 (2000)CrossRef A.C. Masset, C. Michel, A. Maignan et al., Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166–175 (2000)CrossRef
8.
Zurück zum Zitat F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, R.F. Fan, G.Z. Zhang, Doping induced electronic structure and estimated thermoelectric properties of CaMnO3 system. Phys. B 406, 1258–1262 (2011)CrossRef F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, R.F. Fan, G.Z. Zhang, Doping induced electronic structure and estimated thermoelectric properties of CaMnO3 system. Phys. B 406, 1258–1262 (2011)CrossRef
9.
Zurück zum Zitat T. Okuda, Y. Fujii, Cosubstitution effect on the magnetic, transport, and thermoelectric properties of the electron-doped perovskite manganite CaMnO3. J. Appl. Phys. 108, 103702 (2010)CrossRef T. Okuda, Y. Fujii, Cosubstitution effect on the magnetic, transport, and thermoelectric properties of the electron-doped perovskite manganite CaMnO3. J. Appl. Phys. 108, 103702 (2010)CrossRef
10.
Zurück zum Zitat Y. Murano, M. Matsukawa, S. Ohuchi, S. Kobayashi, S. Nimori, R. Suryanarayanan, K. Koyama, N. Kobayashi, Effect of pressure on the magnetic, transport, and thermal-transport properties of the electron-doped manganite CaMn1−xSbxO3. Phys. Rev. B 83, 054437 (2011)CrossRef Y. Murano, M. Matsukawa, S. Ohuchi, S. Kobayashi, S. Nimori, R. Suryanarayanan, K. Koyama, N. Kobayashi, Effect of pressure on the magnetic, transport, and thermal-transport properties of the electron-doped manganite CaMn1−xSbxO3. Phys. Rev. B 83, 054437 (2011)CrossRef
11.
Zurück zum Zitat M. Ohtaki, H. Koga, T. Tokunaga et al., Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3(M = Y, La, Ce, Er, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120(1), 105–111 (1995)CrossRef M. Ohtaki, H. Koga, T. Tokunaga et al., Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3(M = Y, La, Ce, Er, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120(1), 105–111 (1995)CrossRef
12.
Zurück zum Zitat Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)CrossRef Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000)CrossRef
13.
Zurück zum Zitat L. Bocher, M.H. Aguirre, R. Robert, High-temperature stability, structure and thermoelectric properties of CaMn1−xNbxO3 phases. Acta Mater. 57(19), 5667–5680 (2009)CrossRef L. Bocher, M.H. Aguirre, R. Robert, High-temperature stability, structure and thermoelectric properties of CaMn1−xNbxO3 phases. Acta Mater. 57(19), 5667–5680 (2009)CrossRef
14.
Zurück zum Zitat F.P. Zhang, X. Zhang, Q.M. Lu et al., Electronic structure and thermal properties of doped CaMnO3 systems. J. Alloy. Compd. 509, 4171–4175 (2011)CrossRef F.P. Zhang, X. Zhang, Q.M. Lu et al., Electronic structure and thermal properties of doped CaMnO3 systems. J. Alloy. Compd. 509, 4171–4175 (2011)CrossRef
15.
Zurück zum Zitat A. Bhaskar, C.J. Liu, J.J. Yuan, Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy). J. Electron. Mater. 41(9), 2338–2344 (2012)CrossRef A. Bhaskar, C.J. Liu, J.J. Yuan, Thermoelectric and magnetic properties of Ca0.98RE0.02MnO3−δ (RE = Sm, Gd, and Dy). J. Electron. Mater. 41(9), 2338–2344 (2012)CrossRef
16.
Zurück zum Zitat Y. Wang, Y. Sui, X. Wang, W. Su, X. Liu, Correlation of structural distortion with magnetic properties in electron-doped Ca0.9R0.1MnO3 perovskites (R = rare-earth). J. Appl. Phys. 108, 063928 (2010)CrossRef Y. Wang, Y. Sui, X. Wang, W. Su, X. Liu, Correlation of structural distortion with magnetic properties in electron-doped Ca0.9R0.1MnO3 perovskites (R = rare-earth). J. Appl. Phys. 108, 063928 (2010)CrossRef
17.
Zurück zum Zitat W.E. Pickett, D.J. Singh, Electronic structure and half-metallic transport in the La1−xCaxMnO3 system. Phys. Rev. B 53(3), 1146–1160 (1996)CrossRef W.E. Pickett, D.J. Singh, Electronic structure and half-metallic transport in the La1−xCaxMnO3 system. Phys. Rev. B 53(3), 1146–1160 (1996)CrossRef
18.
Zurück zum Zitat B. Raveau, A. Maignan, C. Martin et al., Colossal magnetoresistance manganite perovskites: relations between crystal chemistry and properties. Chem. Mater. 10, 2641–2652 (1998)CrossRef B. Raveau, A. Maignan, C. Martin et al., Colossal magnetoresistance manganite perovskites: relations between crystal chemistry and properties. Chem. Mater. 10, 2641–2652 (1998)CrossRef
19.
Zurück zum Zitat W.J. Jiang, X.Z. Zhou, G. Williams et al., The evolution of Griffiths-phase-like features and colossal magnetoresistance in La1−xCaxMnO3 (0.18 ≤ x≤0.27) across the compositional metal–insulator boundary. J. Phys.: Condens. Matter 21(41), 1–15 (2009) W.J. Jiang, X.Z. Zhou, G. Williams et al., The evolution of Griffiths-phase-like features and colossal magnetoresistance in La1−xCaxMnO3 (0.18 ≤ x≤0.27) across the compositional metal–insulator boundary. J. Phys.: Condens. Matter 21(41), 1–15 (2009)
20.
Zurück zum Zitat D.S. Alfaruq, M.H. Aguirre, E.H. Otal, S. Populoh, L. Karvonen, S. Yoon, Y. Lu, G. Deng, S.G. Ebbinghaus, A. Weidenkaff, J. Cryst. Growth 377, 170–177 (2013)CrossRef D.S. Alfaruq, M.H. Aguirre, E.H. Otal, S. Populoh, L. Karvonen, S. Yoon, Y. Lu, G. Deng, S.G. Ebbinghaus, A. Weidenkaff, J. Cryst. Growth 377, 170–177 (2013)CrossRef
21.
Zurück zum Zitat M. Rosić, M. Logar, J. Zagorac, A. Devečerski, A. Egelja, V. Kusigerski, V. Spasojević, B. Matović, Ceram. Int. 39, 1853–1861 (2013)CrossRef M. Rosić, M. Logar, J. Zagorac, A. Devečerski, A. Egelja, V. Kusigerski, V. Spasojević, B. Matović, Ceram. Int. 39, 1853–1861 (2013)CrossRef
22.
Zurück zum Zitat C. Silveira, M.E. Lopes, M.R. Nunes et al., Synthesis and electrical properties of nanocrystalline Ca1−xEuxMnO3±δ(0.1 ≤ x≤0.4) powders prepared at low temperature using citrate gel method. Solid State Ion. 180(40), 1702–1709 (2010)CrossRef C. Silveira, M.E. Lopes, M.R. Nunes et al., Synthesis and electrical properties of nanocrystalline Ca1−xEuxMnO3±δ(0.1 ≤ x≤0.4) powders prepared at low temperature using citrate gel method. Solid State Ion. 180(40), 1702–1709 (2010)CrossRef
23.
Zurück zum Zitat A. Shukla, R.N.P. Choudhary, Study of electrical properties of La3+/Mn4+ modified PbTiO3 nanoceramics. J. Mater. Sci. 47, 5074–5085 (2012)CrossRef A. Shukla, R.N.P. Choudhary, Study of electrical properties of La3+/Mn4+ modified PbTiO3 nanoceramics. J. Mater. Sci. 47, 5074–5085 (2012)CrossRef
24.
Zurück zum Zitat C. Moure, M. Villegas, J.F. Fernandez et al., Phase transition and electrical conductivity in the system YMnO3–CaMnO3. J. Mater. Sci. 34, 2565–2568 (1999)CrossRef C. Moure, M. Villegas, J.F. Fernandez et al., Phase transition and electrical conductivity in the system YMnO3–CaMnO3. J. Mater. Sci. 34, 2565–2568 (1999)CrossRef
25.
Zurück zum Zitat J. Lan, Y.H. Lin, A. Mei et al., High-temperature electric properties of polycrystalline La-doped CaMnO3 ceramics. J. Mater. Sci. Technol. 25(4), 535–538 (2009) J. Lan, Y.H. Lin, A. Mei et al., High-temperature electric properties of polycrystalline La-doped CaMnO3 ceramics. J. Mater. Sci. Technol. 25(4), 535–538 (2009)
26.
Zurück zum Zitat P.A. Joy, P.S. Anil Kumar, S.K. Date, Electrical resistivity behavior of substituted perovskite manganates sintered at different temperatures. Mater. Res. Bull. 34(14–15), 2143–2149 (1999)CrossRef P.A. Joy, P.S. Anil Kumar, S.K. Date, Electrical resistivity behavior of substituted perovskite manganates sintered at different temperatures. Mater. Res. Bull. 34(14–15), 2143–2149 (1999)CrossRef
27.
Zurück zum Zitat R. Yu, S.J. Yunoki, S. Dong et al., Electronic and magnetic properties of RMnO3/AMnO3 heterostructures. Phys. Rev. B 80, 125115 (2009)CrossRef R. Yu, S.J. Yunoki, S. Dong et al., Electronic and magnetic properties of RMnO3/AMnO3 heterostructures. Phys. Rev. B 80, 125115 (2009)CrossRef
28.
Zurück zum Zitat N.H. Linh, N.T. Trang, N.T. Cuong et al., Influence of doped rare earth elements on electronic properties of the R0.25Ca0.75MnO3 systems. Comput. Mater. Sci. 50, 2–5 (2010)CrossRef N.H. Linh, N.T. Trang, N.T. Cuong et al., Influence of doped rare earth elements on electronic properties of the R0.25Ca0.75MnO3 systems. Comput. Mater. Sci. 50, 2–5 (2010)CrossRef
29.
Zurück zum Zitat N.N. Loshkareva, D.I. Gorbunov, A.V. Andreev, N.V. Mushnikov, Y. Skourski, F.W. Fabris, J. Alloy. Compd. 553, 199–203 (2013)CrossRef N.N. Loshkareva, D.I. Gorbunov, A.V. Andreev, N.V. Mushnikov, Y. Skourski, F.W. Fabris, J. Alloy. Compd. 553, 199–203 (2013)CrossRef
30.
Zurück zum Zitat F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, Phys. Scr. 88, 035705 (2013)CrossRef F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, Phys. Scr. 88, 035705 (2013)CrossRef
31.
Zurück zum Zitat Yunjiao Li, Sue Hao, Xue Xia, Xu Jialin, Du Xin, Siyu Fang, Xianwei Meng, Preparation, structure, and electrical properties of Ca1−xErxMnO3 powders. J. Electron. Mater. 42, 745–751 (2013)CrossRef Yunjiao Li, Sue Hao, Xue Xia, Xu Jialin, Du Xin, Siyu Fang, Xianwei Meng, Preparation, structure, and electrical properties of Ca1−xErxMnO3 powders. J. Electron. Mater. 42, 745–751 (2013)CrossRef
32.
Zurück zum Zitat W. Paszkowicz, S.M. Woodley, P. Piszora, B. Bojanowski, J. Pietosa, Y. Cerenius, S. Carlson, C. Martin, Appl. Phys. A 112, 839–845 (2013)CrossRef W. Paszkowicz, S.M. Woodley, P. Piszora, B. Bojanowski, J. Pietosa, Y. Cerenius, S. Carlson, C. Martin, Appl. Phys. A 112, 839–845 (2013)CrossRef
33.
Zurück zum Zitat F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, J. Phys. Chem. Solids 74, 1859–1864 (2013)CrossRef F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, J. Phys. Chem. Solids 74, 1859–1864 (2013)CrossRef
Metadaten
Titel
Investigation on relationship among calcination temperature, grain size, Mn valence and resistivity of Ca0.75Er0.25MnO3−δ powders
verfasst von
Yunjiao Li
Sue Hao
Fangwei Wang
Xinrong Liu
Xianwei Meng
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2015
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2380-6

Weitere Artikel der Ausgabe 1/2015

Journal of Materials Science: Materials in Electronics 1/2015 Zur Ausgabe

Neuer Inhalt