Skip to main content

2014 | OriginalPaper | Buchkapitel

10. Invisibility Cloak at Optical Frequencies

verfasst von : Shuang Zhang

Erschienen in: Transformation Electromagnetics and Metamaterials

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The invisibility cloak is an intensively studied topic in the fields of electromagnetism and optics. Since the first theoretical formulation of invisibility, growing attention has been paid to this rapidly growing field, both in theory and experiments. In this chapter, we review the recent progress in the invisibility cloak and transformation optics at optical frequencies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901CrossRef Li J, Pendry JB (2008) Hiding under the carpet: a new strategy for cloaking. Phys Rev Lett 101:203901CrossRef
4.
5.
Zurück zum Zitat Liu R et al (2009) Broadband ground-plane cloak. Science 323:366–369CrossRef Liu R et al (2009) Broadband ground-plane cloak. Science 323:366–369CrossRef
6.
Zurück zum Zitat Tretyakov S, Alitalo P, Luukkonen O, Simovski C (2009) Broadband electromagnetic cloaking of long cylindrical objects. Phys Rev Lett 103:103905CrossRef Tretyakov S, Alitalo P, Luukkonen O, Simovski C (2009) Broadband electromagnetic cloaking of long cylindrical objects. Phys Rev Lett 103:103905CrossRef
7.
Zurück zum Zitat Edwards B, Alu A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901CrossRef Edwards B, Alu A, Silveirinha MG, Engheta N (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901CrossRef
8.
Zurück zum Zitat Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571CrossRef Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571CrossRef
9.
Zurück zum Zitat Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463CrossRef Gabrielli LH, Cardenas J, Poitras CB, Lipson M (2009) Silicon nanostructure cloak operating at optical frequencies. Nat Photon 3:461–463CrossRef
10.
Zurück zum Zitat Smolyaninov II, Smolyaninova VN, Kildishev AV, Shalaev VM (2009) Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys Rev Lett 102:213901CrossRef Smolyaninov II, Smolyaninova VN, Kildishev AV, Shalaev VM (2009) Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys Rev Lett 102:213901CrossRef
11.
Zurück zum Zitat Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three dimensional invisibility cloak at optical wavelengths. Science 328:337–339CrossRef Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M (2010) Three dimensional invisibility cloak at optical wavelengths. Science 328:337–339CrossRef
12.
Zurück zum Zitat Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Comm 1:21 Ma HF, Cui TJ (2010) Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Comm 1:21
13.
Zurück zum Zitat Chen XZ, Luo Y, Zhang JJ, Jiang K, Pendry JB, Zhang S (2011) Macroscopic invisibility cloaking of visible light. Nat Comm 2:176CrossRef Chen XZ, Luo Y, Zhang JJ, Jiang K, Pendry JB, Zhang S (2011) Macroscopic invisibility cloaking of visible light. Nat Comm 2:176CrossRef
14.
Zurück zum Zitat Zhang B, Luo Y, Liu X, Barbastathis G (2001) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:033901CrossRef Zhang B, Luo Y, Liu X, Barbastathis G (2001) Macroscopic invisibility cloak for visible light. Phys Rev Lett 106:033901CrossRef
15.
Zurück zum Zitat Ergin T, Fischer J, Wegener M (2011) Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Phys Rev Lett 107:173901CrossRef Ergin T, Fischer J, Wegener M (2011) Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak. Phys Rev Lett 107:173901CrossRef
16.
Zurück zum Zitat Gharghi M et al (2011) A carpet cloak for visible light. Nano Lett 11:2825–2828CrossRef Gharghi M et al (2011) A carpet cloak for visible light. Nano Lett 11:2825–2828CrossRef
17.
Zurück zum Zitat Zhang J, Liu L, Luo Y, Zhang S, Mortensen NA (2011) Homogeneous optical cloak constructed with uniform layered structures. Opt Exp 19:8625–8631CrossRef Zhang J, Liu L, Luo Y, Zhang S, Mortensen NA (2011) Homogeneous optical cloak constructed with uniform layered structures. Opt Exp 19:8625–8631CrossRef
18.
Zurück zum Zitat Zhou F, Bao Y, Cao W, Stuart CT, Gu J, Zhang W, Sun C (2011) Hiding a realistic object using a broadband terahertz invisibility cloak. Sci Rep 1:78 Zhou F, Bao Y, Cao W, Stuart CT, Gu J, Zhang W, Sun C (2011) Hiding a realistic object using a broadband terahertz invisibility cloak. Sci Rep 1:78
19.
Zurück zum Zitat Chen H, Zheng B (2011) Broadband polygonal invisibility cloak for visible light. Sci Rep 2:255 Chen H, Zheng B (2011) Broadband polygonal invisibility cloak for visible light. Sci Rep 2:255
20.
Zurück zum Zitat Tachi S (2003) Telexistence and retro-reflective projection technology (RPT). Proceedings of the 5th Virtual reality international conference, 69/1–69/9, Lava Virtual 2003, France Tachi S (2003) Telexistence and retro-reflective projection technology (RPT). Proceedings of the 5th Virtual reality international conference, 69/1–69/9, Lava Virtual 2003, France
21.
Zurück zum Zitat Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Exp 16:11555–11567CrossRef Rahm M, Roberts DA, Pendry JB, Smith DR (2008) Transformation-optical design of adaptive beam bends and beam expanders. Opt Exp 16:11555–11567CrossRef
22.
Zurück zum Zitat Zentgraf T, Valentine J, Tapia N, Li J, Zhang X (2010) An Optical “Janus” device for integrated photonics. Adv Mat 22:2561CrossRef Zentgraf T, Valentine J, Tapia N, Li J, Zhang X (2010) An Optical “Janus” device for integrated photonics. Adv Mat 22:2561CrossRef
23.
Zurück zum Zitat Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photon 1:224–227CrossRef Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2007) Optical cloaking with metamaterials. Nat Photon 1:224–227CrossRef
24.
Zurück zum Zitat Pendry JB et al (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084CrossRef Pendry JB et al (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47:2075–2084CrossRef
25.
Zurück zum Zitat Smith DR et al (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRef Smith DR et al (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187CrossRef
26.
Zurück zum Zitat Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRef Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79CrossRef
27.
Zurück zum Zitat Yen TJ et al (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496CrossRef Yen TJ et al (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496CrossRef
28.
Zurück zum Zitat Zhang S et al (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402CrossRef Zhang S et al (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402CrossRef
29.
Zurück zum Zitat Linden S et al (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353CrossRef Linden S et al (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353CrossRef
30.
Zurück zum Zitat Enkrich C et al (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901CrossRef Enkrich C et al (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901CrossRef
31.
Zurück zum Zitat Ishikawa A, Tanaka T, Kawata S (2005) Negative magnetic permeability in the visible light region. Phys Rev Lett 95:237401CrossRef Ishikawa A, Tanaka T, Kawata S (2005) Negative magnetic permeability in the visible light region. Phys Rev Lett 95:237401CrossRef
32.
Zurück zum Zitat Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902CrossRef Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM (2005) Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys Rev Lett 95:223902CrossRef
33.
Zurück zum Zitat Cai W, Chettiar UK, Kildishev AV, Milton GW, Shalaev VM (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105CrossRef Cai W, Chettiar UK, Kildishev AV, Milton GW, Shalaev VM (2007) Nonmagnetic cloak with minimized scattering. Appl Phys Lett 91:111105CrossRef
34.
Zurück zum Zitat Knupp P, Steinberg S (1994) Fundamentals of grid generation. CRC Press, Boca RatonMATH Knupp P, Steinberg S (1994) Fundamentals of grid generation. CRC Press, Boca RatonMATH
35.
Zurück zum Zitat Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698CrossRef Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697–698CrossRef
36.
Zurück zum Zitat Deubel M et al (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447CrossRef Deubel M et al (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447CrossRef
37.
Zurück zum Zitat Rill MS, Plet C, Thiel M, Staude I, Freymann GV, Linden S, Wegener M (2008) Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mat 7:543–546CrossRef Rill MS, Plet C, Thiel M, Staude I, Freymann GV, Linden S, Wegener M (2008) Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mat 7:543–546CrossRef
38.
Zurück zum Zitat Gansel JK et al (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515CrossRef Gansel JK et al (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515CrossRef
39.
Zurück zum Zitat Ogawa SP et al (2004) Control of light emission by 3D photonic crystals. Science 305:227–229CrossRef Ogawa SP et al (2004) Control of light emission by 3D photonic crystals. Science 305:227–229CrossRef
40.
Zurück zum Zitat Takahashi S et al (2009) Direct creation of three-dimensional photonic crystals by a top–down approach. Nat Mater 8:721–725CrossRef Takahashi S et al (2009) Direct creation of three-dimensional photonic crystals by a top–down approach. Nat Mater 8:721–725CrossRef
41.
Zurück zum Zitat Luo Y, Zhang JJ, Chen HS, Ran LX, Wu BI, Kong JA (2009) A rigorous analysis of plane-transformed invisibility cloaks. IEE Trans Antenn Propag 57:3926–3933CrossRef Luo Y, Zhang JJ, Chen HS, Ran LX, Wu BI, Kong JA (2009) A rigorous analysis of plane-transformed invisibility cloaks. IEE Trans Antenn Propag 57:3926–3933CrossRef
42.
Zurück zum Zitat Xi S, Chen H, Wu BI, Kong JA (2009) One directional perfect cloak created with homogeneous material. IEEE Microw. Wirel Compon Lett 19:131–133CrossRef Xi S, Chen H, Wu BI, Kong JA (2009) One directional perfect cloak created with homogeneous material. IEEE Microw. Wirel Compon Lett 19:131–133CrossRef
43.
Zurück zum Zitat Zhang Y, Fluegel B, Mascarenhas A (2005) Total negative refraction in real crystals for ballistic electrons and light. Phys Rev Lett 91:157404CrossRef Zhang Y, Fluegel B, Mascarenhas A (2005) Total negative refraction in real crystals for ballistic electrons and light. Phys Rev Lett 91:157404CrossRef
Metadaten
Titel
Invisibility Cloak at Optical Frequencies
verfasst von
Shuang Zhang
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4996-5_10

Neuer Inhalt