Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Ion Beam-Induced Damages

verfasst von : Bernd Rauschenbach

Erschienen in: Low-Energy Ion Irradiation of Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bombardment of surfaces with accelerated ions leads to the formation of defects, where lattice atoms can be displaced after collision with the incident ion or a higher order recoil atom if the transferred energy is higher than the displacement threshold energy. The Kinchin-Pease model, modified Kinchin-Pease model, and the Norgett–Robinson–Torrens model are presented and the calculation of the defect generation rate is demonstrated. Of particular importance is the determination of the number of displacements per atom (dpa), since this number is the benchmark for quantifying radiation-induced changes of material properties after ion bombardment. Assuming that elastic collisions are dominant, the spatial distribution of the deposited energy is discussed. If the assumption of subsequent binary collisions is not valid, the formation of high energy density cascades can be expected. Both the displacement spike and the thermal spike are introduced and the mean features of these cascades are discussed. Then, the behaviour of irradiation-induced point defects as a function of irradiation time (fluence) and the temperature during ion bombardment is described and the main analytical relationships are given. As the concentration of ion beam-induced defects increases, the probability of formation of an amorphous layer also increases. The formation of an amorphous phase for a given material depends on the ion species, ion energy, fluence, ion current density, and irradiation temperature. The various models proposed in the literature for the ion beam-induced amorphization process are briefly summarized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969) M.W. Thompson, Defects and Radiation Damage in Metals (Cambridge University Press, Cambridge, 1969)
2.
Zurück zum Zitat K.B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975)CrossRef K.B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975)CrossRef
3.
Zurück zum Zitat J.A. Davies, Collision cascades and spike effects, in Surface Modification and Alloying by Laser, Ion, and Electron Beams, ed. by J.M. Poate, G. Foti, D.C. Jacobson (Plenum Press, New York, 1983), pp. 189–219CrossRef J.A. Davies, Collision cascades and spike effects, in Surface Modification and Alloying by Laser, Ion, and Electron Beams, ed. by J.M. Poate, G. Foti, D.C. Jacobson (Plenum Press, New York, 1983), pp. 189–219CrossRef
4.
Zurück zum Zitat M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, Cambridge, 1996) M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, Cambridge, 1996)
5.
Zurück zum Zitat R.S. Averback, T.D. de la Rubia, Displacement damage in irradiated metals and semiconductors, in Solid State Physics, vol. 51, ed. by H. Ehrenfest, F. Spaepen (Academic Press, New York, 1998), pp. 281–402 R.S. Averback, T.D. de la Rubia, Displacement damage in irradiated metals and semiconductors, in Solid State Physics, vol. 51, ed. by H. Ehrenfest, F. Spaepen (Academic Press, New York, 1998), pp. 281–402
6.
Zurück zum Zitat G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2007) G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2007)
7.
Zurück zum Zitat R.E. Stoller, Primary radiation damage formation, in Comprehensive Nuclear Materials, vol. 1, ed. by R.J.M. Konings (Elsevier, Amsterdam 2012), pp. 293–332 R.E. Stoller, Primary radiation damage formation, in Comprehensive Nuclear Materials, vol. 1, ed. by R.J.M. Konings (Elsevier, Amsterdam 2012), pp. 293–332
8.
Zurück zum Zitat D.R. Olander, A.T. Motta, in Light Water Reactor Material, Volume I: Fundamentals (American Nuclear Society, LaGrange Park, 2017) D.R. Olander, A.T. Motta, in Light Water Reactor Material, Volume I: Fundamentals (American Nuclear Society, LaGrange Park, 2017)
9.
Zurück zum Zitat A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00 (IPP Report 2019-02, Munich 2019) A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmidt, U. von Toussaint, G. Badelow, SD TrimSP Version 6.00 (IPP Report 2019-02, Munich 2019)
10.
Zurück zum Zitat H.H. Andersen, The depth resolution of sputter profiling. Appl. Phys. 18, 131–140 (1979)CrossRef H.H. Andersen, The depth resolution of sputter profiling. Appl. Phys. 18, 131–140 (1979)CrossRef
11.
Zurück zum Zitat W.E. King, K.L. Merkle, M. Meshii, Threshold energy surface and Frenkel pair resistivity for Cu. J. Nucl. Mater 117, 12–25 (1983)CrossRef W.E. King, K.L. Merkle, M. Meshii, Threshold energy surface and Frenkel pair resistivity for Cu. J. Nucl. Mater 117, 12–25 (1983)CrossRef
12.
Zurück zum Zitat T.E. Mitchell et al., in Fundamental Aspects of Radiation Damage in Metals, vol. 1, ed. by M.T. Robinson, F.W. Young (US GPO, Washington, DC, 1976), p. 73 T.E. Mitchell et al., in Fundamental Aspects of Radiation Damage in Metals, vol. 1, ed. by M.T. Robinson, F.W. Young (US GPO, Washington, DC, 1976), p. 73
13.
Zurück zum Zitat P. Olsson, S.C. Bequart, C. Domain, Ab initio threshold displacement energies in iron. Mat. Res. Lett. 4, 219–225 (2016)CrossRef P. Olsson, S.C. Bequart, C. Domain, Ab initio threshold displacement energies in iron. Mat. Res. Lett. 4, 219–225 (2016)CrossRef
14.
Zurück zum Zitat D.R. Olander, in Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technical Information Service, Springfield, 1976), pp. 373–417 (Chapter 17) D.R. Olander, in Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technical Information Service, Springfield, 1976), pp. 373–417 (Chapter 17)
15.
Zurück zum Zitat G.H. Kinchin, R.S. Pease, The displacement of atoms in solids. Rep. Progr. Phys. 18, 1–51 (1955)CrossRef G.H. Kinchin, R.S. Pease, The displacement of atoms in solids. Rep. Progr. Phys. 18, 1–51 (1955)CrossRef
16.
Zurück zum Zitat M.T. Robinson, On energy dependence of neutron radiation damage in solids, in Nuclear Fusion Reactors (British Nuclear Energy Society, London, 1970), pp. 346–378 M.T. Robinson, On energy dependence of neutron radiation damage in solids, in Nuclear Fusion Reactors (British Nuclear Energy Society, London, 1970), pp. 346–378
17.
Zurück zum Zitat J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Integral equation governing radiation effects—notes on atomic collision III. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 33(10) (1963) J. Lindhard, V. Nielsen, M. Scharff, P.V. Thomsen, Integral equation governing radiation effects—notes on atomic collision III. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 33(10) (1963)
18.
Zurück zum Zitat M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method for calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975)CrossRef M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method for calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975)CrossRef
19.
Zurück zum Zitat M.T. Robinson, The influence of the scattering low on the radiation damage displacement cascade. Phil. Mag. 12, 741–765 (1965)CrossRef M.T. Robinson, The influence of the scattering low on the radiation damage displacement cascade. Phil. Mag. 12, 741–765 (1965)CrossRef
20.
Zurück zum Zitat M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in binary collision approximation. Phys. Rev. B 9, 5008–5024 (1974)CrossRef M.T. Robinson, I.M. Torrens, Computer simulation of atomic-displacement cascades in solids in binary collision approximation. Phys. Rev. B 9, 5008–5024 (1974)CrossRef
21.
Zurück zum Zitat P. Sigmund, A note on integral equations of Kinchin-Pease type. Rad. Eff. 1, 15–18 (1969)CrossRef P. Sigmund, A note on integral equations of Kinchin-Pease type. Rad. Eff. 1, 15–18 (1969)CrossRef
22.
Zurück zum Zitat P. Sigmund, On the number of atoms displaced by implanted ions or energetic recoil atoms. Appl. Phys. Lett. 14, 114–116 (1969)CrossRef P. Sigmund, On the number of atoms displaced by implanted ions or energetic recoil atoms. Appl. Phys. Lett. 14, 114–116 (1969)CrossRef
23.
Zurück zum Zitat R.S. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver. Phys. Rev. B 18, 4156–4171 (1978). Efficiency of defect production in cascades. J. Nucl. Mater. 69 & 70, 786–789 (1978) R.S. Averback, R. Benedek, K.L. Merkle, Ion-irradiation studies of the damage function of copper and silver. Phys. Rev. B 18, 41564171 (1978). Efficiency of defect production in cascades. J. Nucl. Mater. 69 & 70, 786–789 (1978)
24.
Zurück zum Zitat S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions. J. Nucl. Mater. 199, 173–191 (1993) S.J. Zinkle, B.N. Singh, Analysis of displacement damage and defect production under cascade damage conditions. J. Nucl. Mater. 199, 173–191 (1993)
25.
Zurück zum Zitat S.J. Kim, M.A. Nicolet, R.S. Averback, D. Peak, Low-temperature ion beam mixing in metal. Phys. Rev. B 3, 38–49 (1988) S.J. Kim, M.A. Nicolet, R.S. Averback, D. Peak, Low-temperature ion beam mixing in metal. Phys. Rev. B 3, 38–49 (1988)
26.
Zurück zum Zitat K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage in materials—review of current understanding and proposed new standard displacement damage model to incorporate in cascade defect production efficiency and mixing effects. Report NEA/NSC/DOC (2015) 9 (Nuclear Energy Agency, OECD 2015) K. Nordlund, A.E. Sand, F. Granberg, S.J. Zinkle, R. Stoller, R.S. Averback, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Primary radiation damage in materials—review of current understanding and proposed new standard displacement damage model to incorporate in cascade defect production efficiency and mixing effects. Report NEA/NSC/DOC (2015) 9 (Nuclear Energy Agency, OECD 2015)
27.
Zurück zum Zitat K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Comm. 9, 1084 (2018)CrossRef K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models. Nat. Comm. 9, 1084 (2018)CrossRef
28.
Zurück zum Zitat Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections, Nucl. Energy Technol. 3, 169–175 (2017) Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold displacement energies and other data required for the calculation of advanced atomic displacement cross-sections, Nucl. Energy Technol. 3, 169–175 (2017)
29.
Zurück zum Zitat K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970) K.B. Winterbon, P. Sigmund, J.B. Sanders, Spatial distribution of energy deposited by atomic particles in elastic collisions. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 37(14) (1970)
30.
Zurück zum Zitat D.K. Brice, Spatial distribution of energy deposited into atomic processes in ion-implanted silicon. Rad. Eff. 6, 77–87 (1970)CrossRef D.K. Brice, Spatial distribution of energy deposited into atomic processes in ion-implanted silicon. Rad. Eff. 6, 77–87 (1970)CrossRef
31.
Zurück zum Zitat K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef K.B. Winterbon, Heavy-ion range profiles and associated damage distributions. Rad. Eff. 13, 215–226 (1972)CrossRef
32.
Zurück zum Zitat J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 36(10) (1968) J. Lindhard, V. Nielsen, M. Scharff, Approximation method in classical scattering by screened coulomb fields—notes on atomic collision I. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 36(10) (1968)
33.
Zurück zum Zitat P. Sigmund, G.P. Scheidler, G. Roth, Spatial distribution of defects in cascades. Report BNL 50083, C-52 (1968), p. 375 P. Sigmund, G.P. Scheidler, G. Roth, Spatial distribution of defects in cascades. Report BNL 50083, C-52 (1968), p. 375
34.
Zurück zum Zitat P. Sigmund, Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl. Phys. Lett. 25, 169–171 (1974). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969) P. Sigmund, Energy density and time constant of heavy-ion-induced elastic-collision spikes in solids. Appl. Phys. Lett. 25, 169171 (1974). Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Phys. Rev. 184, 383–416 (1969)
35.
Zurück zum Zitat R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011) R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011)
36.
Zurück zum Zitat M.Z. Hossain, J.B. Freund, H.T. Johnson, Ion impact energy distribution and sputtering of Si and Ge. J. Appl. Phys. 111, 103513 (2012) M.Z. Hossain, J.B. Freund, H.T. Johnson, Ion impact energy distribution and sputtering of Si and Ge. J. Appl. Phys. 111, 103513 (2012)
37.
Zurück zum Zitat G. Hobler, R.M. Bradley, H.M. Urbassek, Probing the limitations of Sigmund’s model of spatially resolved sputtering using Monte Carlo simulations. Phys. Rev. B 93, 205443 (2016) G. Hobler, R.M. Bradley, H.M. Urbassek, Probing the limitations of Sigmund’s model of spatially resolved sputtering using Monte Carlo simulations. Phys. Rev. B 93, 205443 (2016)
38.
Zurück zum Zitat M. Feix, A.K. Hartmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005) M. Feix, A.K. Hartmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005)
39.
Zurück zum Zitat W. Bolse, Ion-beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Eng. R. Rep. 12, 53–121 (1994)CrossRef W. Bolse, Ion-beam-induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides. Mater. Sci. Eng. R. Rep. 12, 53–121 (1994)CrossRef
40.
Zurück zum Zitat R.S. Averback, Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49–62 (1994)CrossRef R.S. Averback, Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49–62 (1994)CrossRef
41.
Zurück zum Zitat F. Seitz, S. Koehler, Displacement of atoms during irradiation, in Solid State Physics, vol. 2, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), pp. 307–442 F. Seitz, S. Koehler, Displacement of atoms during irradiation, in Solid State Physics, vol. 2, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), pp. 307–442
42.
Zurück zum Zitat J.A. Brinkman, On nature of radiation damage in metals. J. Appl. Phys. 25, 961–970 (1954)CrossRef J.A. Brinkman, On nature of radiation damage in metals. J. Appl. Phys. 25, 961–970 (1954)CrossRef
43.
Zurück zum Zitat A Seeger, On the theory of radiation damage and radiation hardening, in Proceedings of the Second UN International Conference on the Peaceful Uses of Atomic Energy, vol. 8 (Geneva 1958), p. 250 A Seeger, On the theory of radiation damage and radiation hardening, in Proceedings of the Second UN International Conference on the Peaceful Uses of Atomic Energy, vol. 8 (Geneva 1958), p. 250
44.
Zurück zum Zitat M. Nastasi, J.W. Mayer, Ion beam mixing in metallic and semiconductor materials. Mater. Sci. Eng. R 12, 1–52 (1994)CrossRef M. Nastasi, J.W. Mayer, Ion beam mixing in metallic and semiconductor materials. Mater. Sci. Eng. R 12, 1–52 (1994)CrossRef
45.
Zurück zum Zitat G.H. Vineyard, Thermal spikes and activated processes. Rad. Eff. Def. Solids 29, 245–248 (1976) G.H. Vineyard, Thermal spikes and activated processes. Rad. Eff. Def. Solids 29, 245–248 (1976)
46.
Zurück zum Zitat H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef H. Hofsäss, H. Feldermann, R. Merk, M. Sebastian, C. Ronning, Cylindrical spike model for the formation of diamond like thin films by ion deposition. Appl. Phys. A 66, 153–181 (1998)CrossRef
47.
Zurück zum Zitat H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids. Rad. Effects 25, 1–12 (1975)CrossRef H.M. Naguib, R. Kelly, Criteria for bombardment-induced structural changes in non-metallic solids. Rad. Effects 25, 1–12 (1975)CrossRef
48.
Zurück zum Zitat L.T. Chadderton, On the anatomy of a fission fragment track. Int. J. Rad. Appl. Instrum. Part D, Nucl. Tracks Rad. Measur. 15, 11–29 (1988) L.T. Chadderton, On the anatomy of a fission fragment track. Int. J. Rad. Appl. Instrum. Part D, Nucl. Tracks Rad. Measur. 15, 11–29 (1988)
49.
Zurück zum Zitat I.M. Lifshitz, M.I. Kaganov, L.V. Tanatarov, On the theory of radiation-induced changes in metals. J. Nucl. Energy A 12, 69–78 (1960) I.M. Lifshitz, M.I. Kaganov, L.V. Tanatarov, On the theory of radiation-induced changes in metals. J. Nucl. Energy A 12, 69–78 (1960)
50.
Zurück zum Zitat Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter 6, 6733–6750 (1995) Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The Se sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys. Condens. Matter 6, 6733–6750 (1995)
51.
Zurück zum Zitat R. Sizmann, Effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70, 386–412 (1978)CrossRef R. Sizmann, Effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70, 386–412 (1978)CrossRef
52.
Zurück zum Zitat W.M. Lomer, Diffusion Coefficients in Copper Under Fast Neutron Irradiation (UKAEA Report AERE-T, 1954) W.M. Lomer, Diffusion Coefficients in Copper Under Fast Neutron Irradiation (UKAEA Report AERE-T, 1954)
53.
Zurück zum Zitat D. Brailsford, R. Bullough, The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121–135 (1972)CrossRef D. Brailsford, R. Bullough, The rate theory of swelling due to void growth in irradiated metals. J. Nucl. Mater. 44, 121–135 (1972)CrossRef
54.
Zurück zum Zitat K.C. Russel, Phase stability under irradiation. Progr. Mater Sci. 28, 229–434 (1984)CrossRef K.C. Russel, Phase stability under irradiation. Progr. Mater Sci. 28, 229–434 (1984)CrossRef
55.
Zurück zum Zitat B. Rauschenbach, V. Heera, Amorphisation of metals by ion implantation and ion beam mixing. Defect Diffus. Forum 57–58, 143–188 (1988)CrossRef B. Rauschenbach, V. Heera, Amorphisation of metals by ion implantation and ion beam mixing. Defect Diffus. Forum 57–58, 143–188 (1988)CrossRef
56.
Zurück zum Zitat B. Rauschenbach, G. Otto, K. Hohmuth, V. Herra, Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation. J. Phys. F Met. Phys. 17, 2207–2216 (1987)CrossRef B. Rauschenbach, G. Otto, K. Hohmuth, V. Herra, Structural investigations of amorphised iron and nickel by high-fluence metalloid ion implantation. J. Phys. F Met. Phys. 17, 2207–2216 (1987)CrossRef
57.
Zurück zum Zitat B. Pfeifer, J.K.N. Lindner, B. Rauschenbach, B. Stritzker, 2 MeV aluminum implantation into silicolr: radiation damage. Nucl. Instr. Meth. Phys. Res. B 96, 150–154 (1995)CrossRef B. Pfeifer, J.K.N. Lindner, B. Rauschenbach, B. Stritzker, 2 MeV aluminum implantation into silicolr: radiation damage. Nucl. Instr. Meth. Phys. Res. B 96, 150–154 (1995)CrossRef
58.
Zurück zum Zitat E. Wendler, Mechanisms of damage formation in semiconductors. Nucl. Instr. Meth. Phys. Res. B 267, 2680–2689 (2009)CrossRef E. Wendler, Mechanisms of damage formation in semiconductors. Nucl. Instr. Meth. Phys. Res. B 267, 2680–2689 (2009)CrossRef
59.
Zurück zum Zitat J. Jagielski, L. Thomé, Multi-step damage accumulation in irradiated crystal. Appl. Phys. A 97, 147–155 (2009)CrossRef J. Jagielski, L. Thomé, Multi-step damage accumulation in irradiated crystal. Appl. Phys. A 97, 147–155 (2009)CrossRef
60.
Zurück zum Zitat J.F. Gibbons, Ion implantation in semiconductors—part II: damage production and annealing. Proc. IEEE 60, 1062–1096 (1972)CrossRef J.F. Gibbons, Ion implantation in semiconductors—part II: damage production and annealing. Proc. IEEE 60, 1062–1096 (1972)CrossRef
61.
Zurück zum Zitat N. Hecking, K.F. Heidemann, E. te Kaat, Model of temperature dependent defect interaction and amorphization in crystalline silicon during irradiation. Nucl. Instr. Meth. Phys. Res. B 15, 760–764 (1986)CrossRef N. Hecking, K.F. Heidemann, E. te Kaat, Model of temperature dependent defect interaction and amorphization in crystalline silicon during irradiation. Nucl. Instr. Meth. Phys. Res. B 15, 760–764 (1986)CrossRef
62.
Zurück zum Zitat W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkl, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998) W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, S.J. Zinkl, Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998)
63.
Zurück zum Zitat H. Trinkaus, Ion beam-induced amorphization of crystalline solids: mechanism and modeling. Mater. Sci. Forum 248(249), 3–12 (1997)CrossRef H. Trinkaus, Ion beam-induced amorphization of crystalline solids: mechanism and modeling. Mater. Sci. Forum 248(249), 3–12 (1997)CrossRef
64.
Zurück zum Zitat S. Voronel, A. Rabinovich, V. Kisliuk, T. Steinberg, Sverbilova, Universality of physical properties of disorderd alloys. Phys. Rev. Lett. 23, 2402–2405 (1988)CrossRef S. Voronel, A. Rabinovich, V. Kisliuk, T. Steinberg, Sverbilova, Universality of physical properties of disorderd alloys. Phys. Rev. Lett. 23, 2402–2405 (1988)CrossRef
65.
Zurück zum Zitat N.Q. Lam, P.R. Okamoto, M. Li, Disorder-induced amorphization. J. Nucl. Mater. 251, 89–97 (1997)CrossRef N.Q. Lam, P.R. Okamoto, M. Li, Disorder-induced amorphization. J. Nucl. Mater. 251, 89–97 (1997)CrossRef
66.
Zurück zum Zitat P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformation. Solid State Phys. 52, 1–135 (1999)CrossRef P.R. Okamoto, N.Q. Lam, L.E. Rehn, Physics of crystal-to-glass transformation. Solid State Phys. 52, 1–135 (1999)CrossRef
67.
Zurück zum Zitat F.A. Lindemann, Über die Berechnung der molekularen Eigenfrequenzen. Phys. Z. 14, 609–612 (1910) F.A. Lindemann, Über die Berechnung der molekularen Eigenfrequenzen. Phys. Z. 14, 609–612 (1910)
68.
Zurück zum Zitat G. Linker, Amorphization of Niobium films by boron ion implantation. Mater. Sci. Eng. 69, 105–110 (1985)CrossRef G. Linker, Amorphization of Niobium films by boron ion implantation. Mater. Sci. Eng. 69, 105–110 (1985)CrossRef
69.
Zurück zum Zitat G. Linker, X-ray study of the defect structure in ion implanted niobium and molybdenum superconductors. Nucl. Instr. Meth. 182–183, 501–508 (1981)CrossRef G. Linker, X-ray study of the defect structure in ion implanted niobium and molybdenum superconductors. Nucl. Instr. Meth. 182–183, 501–508 (1981)CrossRef
70.
Zurück zum Zitat J.R. Dennis, E.B. Hale, Crystalline to amorphous transformation in ion-implanted silicon: a composite model. J. Appl. Phys. 49, 1119–1127 (1978)CrossRef J.R. Dennis, E.B. Hale, Crystalline to amorphous transformation in ion-implanted silicon: a composite model. J. Appl. Phys. 49, 1119–1127 (1978)CrossRef
71.
Zurück zum Zitat S.T. Picraux, F.L. Vook, Ionization, thermal, and flux dependences of implantation disorder in silicon. Rad. Eff. 11, 179–192 (1971). S.T. Picraux, W. Weisenberger, F.L. Vook, Low temperature channeling measurements of ion implantation lattice disorder in single crystal silicon. Rad. Eff. 7, 101–107 (1971) S.T. Picraux, F.L. Vook, Ionization, thermal, and flux dependences of implantation disorder in silicon. Rad. Eff. 11, 179–192 (1971). S.T. Picraux, W. Weisenberger, F.L. Vook, Low temperature channeling measurements of ion implantation lattice disorder in single crystal silicon. Rad. Eff. 7, 101–107 (1971)
72.
Zurück zum Zitat S. Prussin, D.I. Margolese, R.N. Tauber, Formation of amorphous layers by ion implantation. J. Appl. Phys. 57, 180–185 (1985)CrossRef S. Prussin, D.I. Margolese, R.N. Tauber, Formation of amorphous layers by ion implantation. J. Appl. Phys. 57, 180–185 (1985)CrossRef
73.
Zurück zum Zitat F.F. Morehead, B.L. Crowder, A model for the formation of amorphous Si by ion bombardment. Rad. Eff. 6, 27–32 (1970)CrossRef F.F. Morehead, B.L. Crowder, A model for the formation of amorphous Si by ion bombardment. Rad. Eff. 6, 27–32 (1970)CrossRef
74.
Zurück zum Zitat F.F. Morehead, Jr. B.L. Crowder, A model for the formation of amorphous Si by ion bombardment, in Ion Implantation, ed. by F.H. Eisen, L.T. Chadderton (Gordon and Breach Science Publishers, London, 1971), pp. 25–30 F.F. Morehead, Jr. B.L. Crowder, A model for the formation of amorphous Si by ion bombardment, in Ion Implantation, ed. by F.H. Eisen, L.T. Chadderton (Gordon and Breach Science Publishers, London, 1971), pp. 25–30
75.
Zurück zum Zitat E. Wendler, W. Wesch, III–V semiconductors under ion bombardment—studied by RBS in situ at 15 K, in Advances in Solid State Physics, vol. 44 ed. by B. Kramer (Springer, Berlin, Heidelberg, 2004), pp. 339–350 E. Wendler, W. Wesch, III–V semiconductors under ion bombardment—studied by RBS in situ at 15 K, in Advances in Solid State Physics, vol. 44 ed. by B. Kramer (Springer, Berlin, Heidelberg, 2004), pp. 339–350
76.
Zurück zum Zitat L. Pelaz, L.A. Marqués, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5976 (2004)CrossRef L. Pelaz, L.A. Marqués, J. Barbolla, Ion-beam-induced amorphization and recrystallization in silicon. J. Appl. Phys. 96, 5947–5976 (2004)CrossRef
77.
Zurück zum Zitat W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instr. Meth. Phys. Res. B 166–167, 98–106 (2000) W.J. Weber, Models and mechanisms of irradiation-induced amorphization in ceramics, Nucl. Instr. Meth. Phys. Res. B 166–167, 98–106 (2000)
Metadaten
Titel
Ion Beam-Induced Damages
verfasst von
Bernd Rauschenbach
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.