Skip to main content

2014 | OriginalPaper | Buchkapitel

10. Ion Gels for Ionic Polymer Actuators

verfasst von : Masayoshi Watanabe, Satoru Imaizumi, Tomohiro Yasuda, Hisashi Kokubo

Erschienen in: Soft Actuators

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ionic polymer actuators are driven by the migration or diffusion of ions and generally exhibit significant deformation (i.e., bending) under low-voltage (<5 V) applications. However, the durability of conventional ionic polymer actuators decreases under open atmosphere owing to the evaporation of solvents, which are essential for the movement of ions, from the actuators. In order to overcome this drawback, ionic polymer actuators that can be operated under open atmosphere and even under vacuum are being developed using ionic liquids (ILs). Combining macromolecules with ILs as additives can result in highly ion-conducting polymer electrolytes (ion gels) suitable for applications in ionic polymer actuators. However, the contribution of polymeric materials to the high performance of IL-based polymer actuators is yet to be elucidated. In this chapter, IL-based polymer electrolytes comprising block copolymers and polyimides are demonstrated to enable easily processable ionic polymer actuators with high performance and durability. The displacement response is also analyzed using our proposed displacement model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, Washington Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press, Washington
2.
Zurück zum Zitat Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839CrossRef Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839CrossRef
3.
Zurück zum Zitat Smela E (2003) Conjugated polymer actuators for biomediacal applications. Adv Mater 15:481–494CrossRef Smela E (2003) Conjugated polymer actuators for biomediacal applications. Adv Mater 15:481–494CrossRef
4.
Zurück zum Zitat Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta 48:2343–2353CrossRef Shahinpoor M (2003) Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta 48:2343–2353CrossRef
5.
Zurück zum Zitat Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscle”: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212CrossRef
6.
Zurück zum Zitat Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440CrossRef Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H (1995) Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440CrossRef
7.
Zurück zum Zitat Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344CrossRef Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344CrossRef
8.
Zurück zum Zitat Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987CrossRef Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987CrossRef
9.
Zurück zum Zitat Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A 115:79–90CrossRef Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A 115:79–90CrossRef
10.
Zurück zum Zitat Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413CrossRef Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413CrossRef
11.
Zurück zum Zitat Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083CrossRef Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083CrossRef
12.
Zurück zum Zitat Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789CrossRef
13.
Zurück zum Zitat Wilkes JS (2002) A short history of ionic liquids—from Molten salts to neoteric solvents. Green Chem 4:73–80CrossRef Wilkes JS (2002) A short history of ionic liquids—from Molten salts to neoteric solvents. Green Chem 4:73–80CrossRef
14.
Zurück zum Zitat Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365CrossRef Seddon KR (2003) Ionic liquids: a taste of the future. Nat Mater 2:363–365CrossRef
15.
Zurück zum Zitat Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150CrossRef
16.
Zurück zum Zitat Watanabe M, Yamada SI, Sanui K, Ogata N (1993) High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. J Chem Soc Chem Commun 929–931 Watanabe M, Yamada SI, Sanui K, Ogata N (1993) High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. J Chem Soc Chem Commun 929–931
17.
Zurück zum Zitat Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270CrossRef Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270CrossRef
18.
Zurück zum Zitat Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983CrossRef Susan MABH, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4983CrossRef
19.
Zurück zum Zitat Carlin RT, Fuller J (1997) Ionic liquid–polymer gel catalytic membrane. Chem Commun 1345–1346 Carlin RT, Fuller J (1997) Ionic liquid–polymer gel catalytic membrane. Chem Commun 1345–1346
20.
Zurück zum Zitat Fuller J, Breda AC, Carlin RT (1997) Ionic liquid–polymer gel electrolytes. J Electrochem Soc 144:L67–L70CrossRef Fuller J, Breda AC, Carlin RT (1997) Ionic liquid–polymer gel electrolytes. J Electrochem Soc 144:L67–L70CrossRef
21.
Zurück zum Zitat He Y, Lodge TP (2008) Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41:167–174CrossRef He Y, Lodge TP (2008) Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41:167–174CrossRef
22.
Zurück zum Zitat Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749CrossRef Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749CrossRef
23.
Zurück zum Zitat Ueki T, Watanabe M (2012) Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull Chem Soc Jpn 85:33–50CrossRef Ueki T, Watanabe M (2012) Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull Chem Soc Jpn 85:33–50CrossRef
24.
Zurück zum Zitat Seki S, Susan MABH, Kaneko T, Tokuda H, Noda A, Watanabe M (2005) Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B 109:3886–3892CrossRef Seki S, Susan MABH, Kaneko T, Tokuda H, Noda A, Watanabe M (2005) Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B 109:3886–3892CrossRef
25.
Zurück zum Zitat Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53:5555–5562CrossRef Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, Aida T (2008) High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 53:5555–5562CrossRef
26.
Zurück zum Zitat Vidal F, Plesse C, Teyssié D, Chevrot C (2004) Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth Met 142:287–291CrossRef Vidal F, Plesse C, Teyssié D, Chevrot C (2004) Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth Met 142:287–291CrossRef
27.
Zurück zum Zitat Takeuchi I, Asaka K, Kiyohara K, Sugino T, Terasawa N, Mukai K, Shiraishi S (2009) Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon 47:1373–1380CrossRef Takeuchi I, Asaka K, Kiyohara K, Sugino T, Terasawa N, Mukai K, Shiraishi S (2009) Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon 47:1373–1380CrossRef
28.
Zurück zum Zitat Terasawa N, Takeuchi I, Matsumoto H, Mukai K, Asaka K (2011) High performance polymer actuator based on carbon nanotube-ionic liquid gel: effect of ionic liquid. Sens Actuators B 156:539–545CrossRef Terasawa N, Takeuchi I, Matsumoto H, Mukai K, Asaka K (2011) High performance polymer actuator based on carbon nanotube-ionic liquid gel: effect of ionic liquid. Sens Actuators B 156:539–545CrossRef
29.
Zurück zum Zitat Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric–ionic liquid electroactive actuators. Sens Actuators A 126:173–181CrossRef Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric–ionic liquid electroactive actuators. Sens Actuators A 126:173–181CrossRef
30.
Zurück zum Zitat Torop J, Palmre V, Arulepp M, Sugino T, Asaka K, Aabloo A (2011) Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49:3113–3119CrossRef Torop J, Palmre V, Arulepp M, Sugino T, Asaka K, Aabloo A (2011) Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49:3113–3119CrossRef
31.
Zurück zum Zitat Kokubo H, Honda T, Imaizumi S, Dokko K, Watanabe M (2013) Effects of carbon electrode materials on performance of ionic polymer actuators having electric double-layer capacitor structure. Electrochem 81:849–852CrossRef Kokubo H, Honda T, Imaizumi S, Dokko K, Watanabe M (2013) Effects of carbon electrode materials on performance of ionic polymer actuators having electric double-layer capacitor structure. Electrochem 81:849–852CrossRef
32.
Zurück zum Zitat Gao R, Wang D, Heflin JR, Long TE (2012) Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators. J Mater Chem 22:13473–13476CrossRef Gao R, Wang D, Heflin JR, Long TE (2012) Imidazolium sulfonate-containing pentablock copolymer–ionic liquid membranes for electroactive actuators. J Mater Chem 22:13473–13476CrossRef
33.
Zurück zum Zitat Green MD, Wang D, Hemp ST, Choi JH, Winey KI, Heflin JR, Long TE (2012) Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer 53:3677–3686CrossRef Green MD, Wang D, Hemp ST, Choi JH, Winey KI, Heflin JR, Long TE (2012) Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer 53:3677–3686CrossRef
34.
Zurück zum Zitat Wu T, Wang D, Zhang M, Heflin JR, Moore RB, Long TE (2012) RAFT synthesis of ABA triblock copolymers as ionic liquid-containing electroactive membranes. ACS Appl Mater Interfaces 4:6552–6559CrossRef Wu T, Wang D, Zhang M, Heflin JR, Moore RB, Long TE (2012) RAFT synthesis of ABA triblock copolymers as ionic liquid-containing electroactive membranes. ACS Appl Mater Interfaces 4:6552–6559CrossRef
35.
Zurück zum Zitat Hatipoglu G, Liu Y, Zhao R, Yoonessi M, Tigelaar DM, Tadigadapa S, Zhang QM (2012) A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators. Smart Mater Struct 21:055015CrossRef Hatipoglu G, Liu Y, Zhao R, Yoonessi M, Tigelaar DM, Tadigadapa S, Zhang QM (2012) A highly aromatic and sulfonated ionomer for high elastic modulus ionic polymer membrane micro-actuators. Smart Mater Struct 21:055015CrossRef
36.
Zurück zum Zitat Saito S, Katoh Y, Kokubo H, Watanabe M, Maruo S (2009) Development of a soft actuator using a photocurable ionic gel. J Micromech Microeng 19:035005CrossRef Saito S, Katoh Y, Kokubo H, Watanabe M, Maruo S (2009) Development of a soft actuator using a photocurable ionic gel. J Micromech Microeng 19:035005CrossRef
37.
Zurück zum Zitat Imaizumi S, Kokubo H, Watanabe M (2012) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45:401–409CrossRef Imaizumi S, Kokubo H, Watanabe M (2012) Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers. Macromolecules 45:401–409CrossRef
38.
Zurück zum Zitat Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B 116:5080–5089CrossRef Imaizumi S, Kato Y, Kokubo H, Watanabe M (2012) Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures. J Phys Chem B 116:5080–5089CrossRef
39.
Zurück zum Zitat Imaizumi S, Ohtsuki Y, Yasuda T, Kokubo H, Watanabe M (2013) Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials. ACS Appl Mater Interfaces 5:6307–6315CrossRef Imaizumi S, Ohtsuki Y, Yasuda T, Kokubo H, Watanabe M (2013) Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials. ACS Appl Mater Interfaces 5:6307–6315CrossRef
40.
Zurück zum Zitat Patten TE, Xia J, Abernathy T, Matyjaszewski K (1996) Polymers with very low polydispersities from atom transfer radical polymerization. Science 272:866–868CrossRef Patten TE, Xia J, Abernathy T, Matyjaszewski K (1996) Polymers with very low polydispersities from atom transfer radical polymerization. Science 272:866–868CrossRef
41.
Zurück zum Zitat Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107:2270–2299CrossRef Tsarevsky NV, Matyjaszewski K (2007) “Green” atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 107:2270–2299CrossRef
42.
Zurück zum Zitat Ueki T, Karino T, Kobayashi Y, Shibayama M, Watanabe M (2007) Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J Phys Chem B 111:4750–4754CrossRef Ueki T, Karino T, Kobayashi Y, Shibayama M, Watanabe M (2007) Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J Phys Chem B 111:4750–4754CrossRef
43.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600CrossRef Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600CrossRef
44.
Zurück zum Zitat Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110CrossRef Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110CrossRef
45.
Zurück zum Zitat Tokuda H, Tabata S, Susan MABH, Hayamizu K, Watanabe M (2004) Design of polymer electrolytes based on a lithium salt of a weakly coordinating anion to realize high ionic conductivity with fast charge-transfer reaction. J Phys Chem B 108:11995–12002CrossRef Tokuda H, Tabata S, Susan MABH, Hayamizu K, Watanabe M (2004) Design of polymer electrolytes based on a lithium salt of a weakly coordinating anion to realize high ionic conductivity with fast charge-transfer reaction. J Phys Chem B 108:11995–12002CrossRef
46.
Zurück zum Zitat Hickner M, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611CrossRef Hickner M, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4611CrossRef
47.
Zurück zum Zitat Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773CrossRef Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:9764–9773CrossRef
48.
Zurück zum Zitat Yasuda T, Nakamura S, Honda Y, Kinugawa K, Lee SY, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4:1783–1790CrossRef Yasuda T, Nakamura S, Honda Y, Kinugawa K, Lee SY, Watanabe M (2012) Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications. ACS Appl Mater Interfaces 4:1783–1790CrossRef
49.
Zurück zum Zitat Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360CrossRef Michot T, Nishimoto A, Watanabe M (2000) Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochim Acta 45:1347–1360CrossRef
50.
Zurück zum Zitat Essafi W, Gebel G, Mercier R (2004) Sulfonated polyimide ionomers: a structural study. Macromolecules 37:1431–1440CrossRef Essafi W, Gebel G, Mercier R (2004) Sulfonated polyimide ionomers: a structural study. Macromolecules 37:1431–1440CrossRef
51.
Zurück zum Zitat Bae B, Yoda T, Miyatake K, Uchida H, Watanabe M (2010) Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew Chem Int Ed 49:317–320CrossRef Bae B, Yoda T, Miyatake K, Uchida H, Watanabe M (2010) Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew Chem Int Ed 49:317–320CrossRef
Metadaten
Titel
Ion Gels for Ionic Polymer Actuators
verfasst von
Masayoshi Watanabe
Satoru Imaizumi
Tomohiro Yasuda
Hisashi Kokubo
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.