Skip to main content
Erschienen in: Rare Metals 9/2018

15.05.2018

Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria

verfasst von: Jiang-Wei Ju, Dao-Ming Huan, Yan-Xiang Zhang, Chang-Rong Xia, Guang-Lei Cui

Erschienen in: Rare Metals | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work studies the ionic conductivity of nanosized Gd-, Sm-, and Y-doped ceria prepared by the infiltration/impregnation method. The nanoparticles were deposited onto porous pure ceria substrates via infiltration-heating processes, and the conductivity was determined with the electrochemical impedance spectroscopy (EIS) using the conductive model for infiltrated phases. The conductivity of the infiltrated doped ceria changes with the doping amount, and Gd0.25Ce0.75O2−δ, Sm0.2Ce0.8O2−δ, and Y0.15Ce0.85O2−δ show the highest values of 2.56, 3.01, and 2.07 × 10−3 S·cm−1 at 600 °C, respectively. Overall, Sm-doped samples show the highest conductivity, while Y-doped samples show the lowest conductivity. In consideration of the Bruggeman factor, the intrinsic conductivity of the infiltrated doped ceria was calculated. Compared with the bulk doped ceria, the intrinsic conductivity is higher while the activation energy is lower, which may suggest different conduction mechanisms. Besides, co-doping effects on the conductivity of the infiltrated sample are less obvious than those of the bulk sample.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv Mater. 2009;21(9):943.CrossRef Vohs JM, Gorte RJ. High-performance SOFC cathodes prepared by infiltration. Adv Mater. 2009;21(9):943.CrossRef
[2]
Zurück zum Zitat Jiang Z, Xia C, Chen F. Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim Acta. 2010;55(11):3595.CrossRef Jiang Z, Xia C, Chen F. Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochim Acta. 2010;55(11):3595.CrossRef
[3]
Zurück zum Zitat Liu Z, Liu B, Ding D, Liu M, Chen F, Xia C. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. J Power Sources. 2013;237(3):243.CrossRef Liu Z, Liu B, Ding D, Liu M, Chen F, Xia C. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. J Power Sources. 2013;237(3):243.CrossRef
[4]
Zurück zum Zitat Sholklapper TZ, Jacobson CP, Visco SJ. Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells. 2008;8(5):303.CrossRef Sholklapper TZ, Jacobson CP, Visco SJ. Synthesis of dispersed and contiguous nanoparticles in solid oxide fuel cell electrodes. Fuel Cells. 2008;8(5):303.CrossRef
[5]
Zurück zum Zitat Knöfel C, Wang HJ, Thydén KTS, Mogensen M. Modifications of interface chemistry of LSM–YSZ composite by ceria nanoparticles. Solid State Ion. 2011;195(1):36.CrossRef Knöfel C, Wang HJ, Thydén KTS, Mogensen M. Modifications of interface chemistry of LSM–YSZ composite by ceria nanoparticles. Solid State Ion. 2011;195(1):36.CrossRef
[6]
Zurück zum Zitat Chen K, Lü Z, Ai N, Chen X, Hu J, Huang X, Su W. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. J Power Sources. 2007;167(1):84.CrossRef Chen K, Lü Z, Ai N, Chen X, Hu J, Huang X, Su W. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. J Power Sources. 2007;167(1):84.CrossRef
[7]
Zurück zum Zitat Bidrawn F, Kim G, Aramrueang N, Vohs JM, Gorte RJ. Dopants to enhance SOFC cathodes based on Sr-doped LaFeO3 and LaMnO3. J Power Sources. 2010;195(3):720.CrossRef Bidrawn F, Kim G, Aramrueang N, Vohs JM, Gorte RJ. Dopants to enhance SOFC cathodes based on Sr-doped LaFeO3 and LaMnO3. J Power Sources. 2010;195(3):720.CrossRef
[8]
Zurück zum Zitat Jiang SP, Wang W, Zhen YD. Performance and electrode behaviour of nano-YSZ impregnated nickel anodes used in solid oxide fuel cells. J Power Sources. 2005;147(1):1.CrossRef Jiang SP, Wang W, Zhen YD. Performance and electrode behaviour of nano-YSZ impregnated nickel anodes used in solid oxide fuel cells. J Power Sources. 2005;147(1):1.CrossRef
[9]
Zurück zum Zitat Murray EP, Barnett SA. (La, Sr)MnO3–(Ce, Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ion. 2001;143(3):265.CrossRef Murray EP, Barnett SA. (La, Sr)MnO3–(Ce, Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ion. 2001;143(3):265.CrossRef
[10]
Zurück zum Zitat Xu X, Jiang Z, Fan X, Xia C. LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes. Solid State Ion. 2006;177(19–25):2113.CrossRef Xu X, Jiang Z, Fan X, Xia C. LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes. Solid State Ion. 2006;177(19–25):2113.CrossRef
[11]
Zurück zum Zitat Sholklapper TZ, Jacobson CP. Nanostructured solid oxide fuel cell electrodes. Nano Lett. 2007;7(7):2136.CrossRef Sholklapper TZ, Jacobson CP. Nanostructured solid oxide fuel cell electrodes. Nano Lett. 2007;7(7):2136.CrossRef
[12]
Zurück zum Zitat Nie LF, Liu MF, Zhang YJ, Liu M. La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources. 2010;195(15):4704.CrossRef Nie LF, Liu MF, Zhang YJ, Liu M. La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J Power Sources. 2010;195(15):4704.CrossRef
[13]
Zurück zum Zitat Zhi M, Lee S, Miller N, Menzler NH, Wu N. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ Sci. 2012;5(5):7066.CrossRef Zhi M, Lee S, Miller N, Menzler NH, Wu N. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environ Sci. 2012;5(5):7066.CrossRef
[14]
Zurück zum Zitat Jiang SP, Zhang S, Zheng YD, Wang W. Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells. J Am Ceram Soc. 2005;88(7):1779.CrossRef Jiang SP, Zhang S, Zheng YD, Wang W. Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells. J Am Ceram Soc. 2005;88(7):1779.CrossRef
[15]
Zurück zum Zitat Jiang SP, Zhang S, Zhen YD, Koh A. Performance of GDC-impregnated Ni anodes of SOFCs. Electrochem Solid-State Lett. 2004;7(9):A282.CrossRef Jiang SP, Zhang S, Zhen YD, Koh A. Performance of GDC-impregnated Ni anodes of SOFCs. Electrochem Solid-State Lett. 2004;7(9):A282.CrossRef
[16]
Zurück zum Zitat van Berkel FPF, van Heuveln FH, Huijsmans JPP. Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics. Solid State Ion. 1994;72(94):240. van Berkel FPF, van Heuveln FH, Huijsmans JPP. Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics. Solid State Ion. 1994;72(94):240.
[17]
Zurück zum Zitat Zhu W, Ding D, Xia CR. Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: a modeling comparison. Electrochem Solid-State Lett. 2008;11(39):B83.CrossRef Zhu W, Ding D, Xia CR. Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: a modeling comparison. Electrochem Solid-State Lett. 2008;11(39):B83.CrossRef
[18]
Zurück zum Zitat Zhang YX, Xia CR. A particle-layer model for solid-oxide-full-cell cathodes with different structures. J Power Sources. 2010;195(13):4206.CrossRef Zhang YX, Xia CR. A particle-layer model for solid-oxide-full-cell cathodes with different structures. J Power Sources. 2010;195(13):4206.CrossRef
[19]
Zurück zum Zitat Zhang Y, Sun Q, Xia C, Ni M. Geometric properties of nanostructured solid oxide fuel cell electrodes. J Electrochem Soc. 2013;160(3):F278.CrossRef Zhang Y, Sun Q, Xia C, Ni M. Geometric properties of nanostructured solid oxide fuel cell electrodes. J Electrochem Soc. 2013;160(3):F278.CrossRef
[20]
Zurück zum Zitat Liu ZB, Ding D, Liu BB, Guo W, Wang W, Xia C. Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells. J Power Sources. 2011;196(20):8561.CrossRef Liu ZB, Ding D, Liu BB, Guo W, Wang W, Xia C. Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells. J Power Sources. 2011;196(20):8561.CrossRef
[21]
Zurück zum Zitat Ju J, Chen F, Xia C. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochim Acta. 2014;136(8):422.CrossRef Ju J, Chen F, Xia C. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochim Acta. 2014;136(8):422.CrossRef
[22]
Zurück zum Zitat Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN. Studies on structural, morphological and electrical properties of Ce0.8Ln0.2O2−δ (Ln = Y3+, Gd3+, Sm3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method. J Alloys Compd. 2014;585(5):594.CrossRef Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesha KN. Studies on structural, morphological and electrical properties of Ce0.8Ln0.2O2−δ (Ln = Y3+, Gd3+, Sm3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method. J Alloys Compd. 2014;585(5):594.CrossRef
[23]
Zurück zum Zitat Peng R, Fan X, Jiang Z, Xia C. Characteristics of La0.85Sr0.15MnO3–δ powders synthesized by a glycine nitrate process. Fuel Cells. 2006;6(6):455.CrossRef Peng R, Fan X, Jiang Z, Xia C. Characteristics of La0.85Sr0.15MnO3–δ powders synthesized by a glycine nitrate process. Fuel Cells. 2006;6(6):455.CrossRef
[24]
Zurück zum Zitat Zhan ZL, Wen TL, Tu HY, Lu ZY. AC impedance investigation of samarium-doped ceria. J Electrochem Soc. 2001;148(5):A427.CrossRef Zhan ZL, Wen TL, Tu HY, Lu ZY. AC impedance investigation of samarium-doped ceria. J Electrochem Soc. 2001;148(5):A427.CrossRef
[25]
Zurück zum Zitat Bu YF, Zhong Q, Tan WY, Zhou RJ, Song Y, Ca W. Synthesis and properties of samaria-doped ceria electrolyte via ultrasound–microwave assisted sol–gel method. Mater Sci Semicond Process. 2013;16(6):2058.CrossRef Bu YF, Zhong Q, Tan WY, Zhou RJ, Song Y, Ca W. Synthesis and properties of samaria-doped ceria electrolyte via ultrasound–microwave assisted sol–gel method. Mater Sci Semicond Process. 2013;16(6):2058.CrossRef
[26]
Zurück zum Zitat Zha SW, Xia CR, Meng GY. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources. 2003;115(1):44.CrossRef Zha SW, Xia CR, Meng GY. Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J Power Sources. 2003;115(1):44.CrossRef
[27]
Zurück zum Zitat Steele BCH. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion. 2000;129(1–4):95.CrossRef Steele BCH. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion. 2000;129(1–4):95.CrossRef
[28]
Zurück zum Zitat Puin W, Rodewald S, Ramlau R, Heitjans P, Maier J. Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion. 2000;131(1):159.CrossRef Puin W, Rodewald S, Ramlau R, Heitjans P, Maier J. Local and overall ionic conductivity in nanocrystalline CaF2. Solid State Ion. 2000;131(1):159.CrossRef
[29]
Zurück zum Zitat Maier J. Ionic transport in nano-sized systems. Solid State Ion. 2004;175(1):7.CrossRef Maier J. Ionic transport in nano-sized systems. Solid State Ion. 2004;175(1):7.CrossRef
[30]
Zurück zum Zitat Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4(11):805.CrossRef Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4(11):805.CrossRef
[31]
Zurück zum Zitat Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone A, Liang C. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc. 2013;135(3):975.CrossRef Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone A, Liang C. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc. 2013;135(3):975.CrossRef
[32]
Zurück zum Zitat Eguchi K, Setoguchi T, Inoue T, Arai H. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ion. 1992;52(1–3):165.CrossRef Eguchi K, Setoguchi T, Inoue T, Arai H. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ion. 1992;52(1–3):165.CrossRef
[33]
Zurück zum Zitat Kim NJ, Kim BH, Lee D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources. 2000;90(2):139.CrossRef Kim NJ, Kim BH, Lee D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J Power Sources. 2000;90(2):139.CrossRef
[34]
Zurück zum Zitat Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ion. 2001;140(3–4):191.CrossRef Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ion. 2001;140(3–4):191.CrossRef
[35]
Zurück zum Zitat Chen D, Lin Z, Zhu H, Kee RJ. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes. J Power Sources. 2009;191(2):240.CrossRef Chen D, Lin Z, Zhu H, Kee RJ. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes. J Power Sources. 2009;191(2):240.CrossRef
[36]
Zurück zum Zitat Chourashiya MG, Patil JY, Pawar SH, Jadhav LD. Studies on structural, morphological and electrical properties of Ce1−xGdxO2−(x/2). Mater Chem Phys. 2008;109(1):39.CrossRef Chourashiya MG, Patil JY, Pawar SH, Jadhav LD. Studies on structural, morphological and electrical properties of Ce1−xGdxO2−(x/2). Mater Chem Phys. 2008;109(1):39.CrossRef
[37]
Zurück zum Zitat Huang W, Shuk P, Greenblatt M. Properties of sol–gel prepared Ce1−xSmxO2−x/2 solid electrolytes. Solid State Ion. 1997;100(s1–2):23.CrossRef Huang W, Shuk P, Greenblatt M. Properties of sol–gel prepared Ce1−xSmxO2−x/2 solid electrolytes. Solid State Ion. 1997;100(s1–2):23.CrossRef
[38]
Zurück zum Zitat Ding RO, Mori T, Fei Y, Takahashi M, Jin Z, Drennan J. Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Mater. 2006;54(14):3737.CrossRef Ding RO, Mori T, Fei Y, Takahashi M, Jin Z, Drennan J. Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Mater. 2006;54(14):3737.CrossRef
[39]
Zurück zum Zitat Xu H, Yan H, Chen Z. Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid-nitrate low-temperature combustion process. J Power Sources. 2006;163(1):409.CrossRef Xu H, Yan H, Chen Z. Sintering and electrical properties of Ce0.8Y0.2O1.9 powders prepared by citric acid-nitrate low-temperature combustion process. J Power Sources. 2006;163(1):409.CrossRef
Metadaten
Titel
Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria
verfasst von
Jiang-Wei Ju
Dao-Ming Huan
Yan-Xiang Zhang
Chang-Rong Xia
Guang-Lei Cui
Publikationsdatum
15.05.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2018
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1051-9

Weitere Artikel der Ausgabe 9/2018

Rare Metals 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.