Skip to main content

2016 | OriginalPaper | Buchkapitel

Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior

verfasst von : Giuliano Gregori, Tae-Youl Yang, Alessandro Senocrate, Michael Grätzel, Joachim Maier

Erschienen in: Organic-Inorganic Halide Perovskite Photovoltaics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is focused on the relevance of the ionic transport in hybrid organic–inorganic perovskites. The occurrence of significant ionic conductivity along with electronic conductivity leads to stoichiometric polarization on current flow. Such a polarization yields a large apparent dielectric constant at low frequencies and a pronounced hysteresis behavior in i-V sweep experiments. We describe electrochemical background, precise measurements, and the impact of these phenomena for the photo-perovskites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r CrossRef Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.​1021/​ja809598r CrossRef
2.
Zurück zum Zitat Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012). doi:10.1038/srep00591 Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012). doi:10.​1038/​srep00591
3.
Zurück zum Zitat Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340 CrossRef Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.​1038/​nature12340 CrossRef
4.
Zurück zum Zitat Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi:10.1021/ja411509g CrossRef Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi:10.​1021/​ja411509g CrossRef
5.
Zurück zum Zitat Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi:10.1038/nmat4014 CrossRef Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi:10.​1038/​nmat4014 CrossRef
6.
Zurück zum Zitat Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509 CrossRef Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.​1038/​nature12509 CrossRef
7.
Zurück zum Zitat Lee, M.M., Teuscher, J., Miyasaka, T.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 643 (2012). doi:10.1126/science.1228604 Lee, M.M., Teuscher, J., Miyasaka, T.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 643 (2012). doi:10.​1126/​science.​1228604
8.
Zurück zum Zitat Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-Organic-Cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). doi:10.1002/anie.201309361 CrossRef Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-Organic-Cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). doi:10.​1002/​anie.​201309361 CrossRef
9.
Zurück zum Zitat Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The Significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). doi:10.1002/anie.201500014 CrossRef Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The Significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). doi:10.​1002/​anie.​201500014 CrossRef
10.
Zurück zum Zitat Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5(13), 2390–2394 (2014). doi:10.1021/jz5011169 CrossRef Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5(13), 2390–2394 (2014). doi:10.​1021/​jz5011169 CrossRef
11.
Zurück zum Zitat Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis. J. Phys. Chem. Lett. 5(13), 2357–2363 (2014). doi:10.1021/jz5011187 CrossRef Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis. J. Phys. Chem. Lett. 5(13), 2357–2363 (2014). doi:10.​1021/​jz5011187 CrossRef
13.
Zurück zum Zitat Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014). doi:10.1021/jz500113x CrossRef Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014). doi:10.​1021/​jz500113x CrossRef
14.
Zurück zum Zitat Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014). doi:10.1039/C4EE02465F CrossRef Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014). doi:10.​1039/​C4EE02465F CrossRef
15.
Zurück zum Zitat Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L.M., Johnston, M.B., Lin, H., Snaith, H.J.: Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015). doi:10.1039/C4MH00238E CrossRef Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L.M., Johnston, M.B., Lin, H., Snaith, H.J.: Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015). doi:10.​1039/​C4MH00238E CrossRef
17.
Zurück zum Zitat Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014). doi:10.1021/nl500390f CrossRef Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014). doi:10.​1021/​nl500390f CrossRef
18.
Zurück zum Zitat Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi:10.1021/ic401215x CrossRef Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi:10.​1021/​ic401215x CrossRef
20.
Zurück zum Zitat Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87(11), 6373–6378 (1987). doi:10.1063/1.453467 CrossRef Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87(11), 6373–6378 (1987). doi:10.​1063/​1.​453467 CrossRef
22.
Zurück zum Zitat Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). doi:10.1038/ncomms6784 CrossRef Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). doi:10.​1038/​ncomms6784 CrossRef
23.
Zurück zum Zitat Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J.: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014). doi:10.1039/C4EE01138D CrossRef Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J.: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014). doi:10.​1039/​C4EE01138D CrossRef
24.
Zurück zum Zitat You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510 CrossRef You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.​1063/​1.​4901510 CrossRef
25.
Zurück zum Zitat Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.-P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., Sargent, E.H.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Communi. 6 (2015). doi:10.1038/ncomms8081 Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.-P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., Sargent, E.H.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Communi. 6 (2015). doi:10.​1038/​ncomms8081
26.
Zurück zum Zitat Nie, W., Tsai, H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). doi:10.1126/science.aaa0472 CrossRef Nie, W., Tsai, H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). doi:10.​1126/​science.​aaa0472 CrossRef
27.
Zurück zum Zitat Yamada, K., Isobe, K., Okuda, T., Furukawa, Y.: Successive Phase Transitions and High Ionic Conductivity of Trichlorogermanate(II) Salts as Studied by 35Cl NQR and Powder X-Ray Diffraction. Z. Naturforsch. A J. Phys. Sci. 49(1–2), 258–266 (1994). doi:10.1515/zna-1994-1-238 Yamada, K., Isobe, K., Okuda, T., Furukawa, Y.: Successive Phase Transitions and High Ionic Conductivity of Trichlorogermanate(II) Salts as Studied by 35Cl NQR and Powder X-Ray Diffraction. Z. Naturforsch. A J. Phys. Sci. 49(1–2), 258–266 (1994). doi:10.​1515/​zna-1994-1-238
28.
Zurück zum Zitat Yamada, K., Isobe, K., Tsuyama, E., Okuda, T., Furukawa, Y.: Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR. Solid State Ionics 79, 152–157 (1995). doi:10.1016/0167-2738(95)00055-B CrossRef Yamada, K., Isobe, K., Tsuyama, E., Okuda, T., Furukawa, Y.: Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR. Solid State Ionics 79, 152–157 (1995). doi:10.​1016/​0167-2738(95)00055-B CrossRef
29.
Zurück zum Zitat Yamada, K., Kuranaga, Y., Ueda, K., Goto, S.: Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Japan 71, 127-127 (1998). doi:10.1246/bcsj.71.127 Yamada, K., Kuranaga, Y., Ueda, K., Goto, S.: Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Japan 71, 127-127 (1998). doi:10.​1246/​bcsj.​71.​127
30.
Zurück zum Zitat Yamada, K., Matsui, T., Tsuritani, T., Okuda, T., Ichiba, S.: 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M = K, NH4, Rb, Cs, and CH3NH3). Z. Naturforsch. A 45(3–4), 307–312 (1990). doi:10.1515/zna-1990-3-416 Yamada, K., Matsui, T., Tsuritani, T., Okuda, T., Ichiba, S.: 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M = K, NH4, Rb, Cs, and CH3NH3). Z. Naturforsch. A 45(3–4), 307–312 (1990). doi:10.​1515/​zna-1990-3-416
34.
Zurück zum Zitat Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1), 362–373 (2013). doi:10.1021/nn404323g CrossRef Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1), 362–373 (2013). doi:10.​1021/​nn404323g CrossRef
35.
Zurück zum Zitat Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014). doi:10.1038/nmat4150 CrossRef Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014). doi:10.​1038/​nmat4150 CrossRef
36.
Zurück zum Zitat Zhao, Y., Liang, C., Zhang, H.M., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q., Zhang, F., He, Z.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015). doi:10.1039/C4EE04064C CrossRef Zhao, Y., Liang, C., Zhang, H.M., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q., Zhang, F., He, Z.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015). doi:10.​1039/​C4EE04064C CrossRef
37.
Zurück zum Zitat Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). doi:10.1021/acs.jpclett.5b02229 CrossRef Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). doi:10.​1021/​acs.​jpclett.​5b02229 CrossRef
38.
Zurück zum Zitat Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J.: Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. (JUNE), n/a-n/a (2015). doi:10.1002/aenm.201500615 Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J.: Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. (JUNE), n/a-n/a (2015). doi:10.​1002/​aenm.​201500615
39.
Zurück zum Zitat Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., De Bastiani, M., Bowring, A.R., Martino, N., Wojciechowski, K., McGehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015). doi:10.1002/aenm.201500962 CrossRef Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., De Bastiani, M., Bowring, A.R., Martino, N., Wojciechowski, K., McGehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015). doi:10.​1002/​aenm.​201500962 CrossRef
40.
Zurück zum Zitat Bag, M., Renna, L.a., Adhikari, R., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137(40), 13130–13137 (2015). doi:10.1021/jacs.5b08535 CrossRef Bag, M., Renna, L.a., Adhikari, R., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137(40), 13130–13137 (2015). doi:10.​1021/​jacs.​5b08535 CrossRef
41.
42.
Zurück zum Zitat Buin, A., Pietsch, P., Voznyy, O., Comin, R.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). doi:10.1021/nl502612m CrossRef Buin, A., Pietsch, P., Voznyy, O., Comin, R.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). doi:10.​1021/​nl502612m CrossRef
43.
Zurück zum Zitat Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong Covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136(41), 14570–14575 (2014). doi:10.1021/ja5079305 CrossRef Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong Covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136(41), 14570–14575 (2014). doi:10.​1021/​ja5079305 CrossRef
44.
Zurück zum Zitat Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-Regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54(6), 1791–1794 (2015). doi:10.1002/anie.201409740 CrossRef Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-Regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54(6), 1791–1794 (2015). doi:10.​1002/​anie.​201409740 CrossRef
45.
Zurück zum Zitat Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014). doi:10.1021/jz500370k CrossRef Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014). doi:10.​1021/​jz500370k CrossRef
46.
Zurück zum Zitat Eames, C., Frost, J.M., Barnes, P.R.F., Oregan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 6 (2015). doi:10.1038/ncomms8497 Eames, C., Frost, J.M., Barnes, P.R.F., Oregan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 6 (2015). doi:10.​1038/​ncomms8497
47.
Zurück zum Zitat Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015). doi:10.1021/jacs.5b03615 CrossRef Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015). doi:10.​1021/​jacs.​5b03615 CrossRef
48.
Zurück zum Zitat Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). doi:10.1039/C5EE01265A CrossRef Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). doi:10.​1039/​C5EE01265A CrossRef
50.
Zurück zum Zitat Yokota, I.: On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16(11), 2213–2223 (1961). doi:10.1143/JPSJ.16.2213 CrossRef Yokota, I.: On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16(11), 2213–2223 (1961). doi:10.​1143/​JPSJ.​16.​2213 CrossRef
51.
Zurück zum Zitat Maier, J.: Solid state electrochemistry ii: devices and techniques. In: Vayenas, C., White, R.E., Gambpa-Aldeco, M.E. (eds.) Modern aspects of electrochemistry, vol. 41. pp. 1−128. Springer, New York (2007) Maier, J.: Solid state electrochemistry ii: devices and techniques. In: Vayenas, C., White, R.E., Gambpa-Aldeco, M.E. (eds.) Modern aspects of electrochemistry, vol. 41. pp. 1−128. Springer, New York (2007)
54.
Zurück zum Zitat Jamnik, J., Maier, J.: Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3(9), 1668–1678 (2001). doi:10.1039/B100180I CrossRef Jamnik, J., Maier, J.: Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3(9), 1668–1678 (2001). doi:10.​1039/​B100180I CrossRef
55.
Zurück zum Zitat Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013). doi:10.1063/1.4824147 CrossRef Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013). doi:10.​1063/​1.​4824147 CrossRef
56.
Zurück zum Zitat Knop, O., Wasylishen, R.E., White, M.A., Cameron, T.S.: Oort, M.J.v.: Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68(3), 412–422 (1990). doi:10.1139/v90-063 CrossRef Knop, O., Wasylishen, R.E., White, M.A., Cameron, T.S.: Oort, M.J.v.: Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68(3), 412–422 (1990). doi:10.​1139/​v90-063 CrossRef
57.
Zurück zum Zitat Maier, J.: Physical chemistry of ionic materials. WILEY, Chichester (2004)CrossRef Maier, J.: Physical chemistry of ionic materials. WILEY, Chichester (2004)CrossRef
58.
Zurück zum Zitat Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalton Trans. (1), 1−12 (2001). doi:10.1039/B007070J Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalton Trans. (1), 1−12 (2001). doi:10.​1039/​B007070J
60.
Zurück zum Zitat Duan, H.S., Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T.B., Bob, B., Yang, Y.: The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). doi:10.1039/c4cp04479g CrossRef Duan, H.S., Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T.B., Bob, B., Yang, Y.: The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). doi:10.​1039/​c4cp04479g CrossRef
61.
Zurück zum Zitat Samiee, M., Konduri, S., Ganapathy, B., Kottokkaran, R., Abbas, H.A., Kitahara, A., Joshi, P., Zhang, L., Noack, M., Dalal, V.: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105(15), 153502 (2014). doi:10.1063/1.4897329 CrossRef Samiee, M., Konduri, S., Ganapathy, B., Kottokkaran, R., Abbas, H.A., Kitahara, A., Joshi, P., Zhang, L., Noack, M., Dalal, V.: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105(15), 153502 (2014). doi:10.​1063/​1.​4897329 CrossRef
Metadaten
Titel
Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior
verfasst von
Giuliano Gregori
Tae-Youl Yang
Alessandro Senocrate
Michael Grätzel
Joachim Maier
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-35114-8_5