Skip to main content
Erschienen in:

02.06.2022

IR-Capsule: Two-Stream Network for Face Forgery Detection

verfasst von: Kaihan Lin, Weihong Han, Shudong Li, Zhaoquan Gu, Huimin Zhao, Jinchang Ren, Li Zhu, Jujian Lv

Erschienen in: Cognitive Computation | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the emergence of deep learning, generating forged images or videos has become much easier in recent years. Face forgery detection, as a way to detect forgery, is an important topic in digital media forensics. Despite previous works having made remarkable progress, the spatial relationships of each part of the face that has significant forgery clues are seldom explored. To overcome this shortcoming, a two-stream face forgery detection network that fuses Inception ResNet stream and capsule network stream (IR-Capsule) is proposed in this paper, which can learn both conventional facial features and hierarchical pose relationships and angle features between different parts of the face. Furthermore, part of the Inception ResNet V1 model pre-trained on the VGGFACE2 dataset is utilized as an initial feature extractor to reduce overfitting and training time, and a modified capsule loss is proposed for the IR-Capsule network. Experimental results on the challenging FaceForensics++ benchmark show that the proposed IR-Capsule improves accuracy by more than 3% compared with several state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deng J, Guo J, Xue N, Zafeiriou S. ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 4690–9. Deng J, Guo J, Xue N, Zafeiriou S. ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019. p. 4690–9.
2.
Zurück zum Zitat Lin K, Zhao H, Lv J, Li C, Liu X, Chen R, Zhao R. Face detection and segmentation based on improved mask R-CNN. Discrete Dyn Nat Soc. 2020;2020:9242917.CrossRef Lin K, Zhao H, Lv J, Li C, Liu X, Chen R, Zhao R. Face detection and segmentation based on improved mask R-CNN. Discrete Dyn Nat Soc. 2020;2020:9242917.CrossRef
3.
Zurück zum Zitat Fang Z, Ren J, Marshall S, Zhao H, Wang Z, Huang K, Xiao B. Triple loss for hard face detection. Neurocomputing. 2020;398:20–30.CrossRef Fang Z, Ren J, Marshall S, Zhao H, Wang Z, Huang K, Xiao B. Triple loss for hard face detection. Neurocomputing. 2020;398:20–30.CrossRef
4.
Zurück zum Zitat Zhao J, Han J, Shao L. Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Trans Circuits Syst Video Technol. 2017;28(10):2679–89.CrossRef Zhao J, Han J, Shao L. Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Trans Circuits Syst Video Technol. 2017;28(10):2679–89.CrossRef
5.
Zurück zum Zitat Yan Y, Ren J, Zhao H, Sun G, Wang Z, Zheng J, Marshall S, Soraghan J. Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cognit Comput. 2018;10(1):94–104.CrossRef Yan Y, Ren J, Zhao H, Sun G, Wang Z, Zheng J, Marshall S, Soraghan J. Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cognit Comput. 2018;10(1):94–104.CrossRef
6.
Zurück zum Zitat Wang Z, Ren J, Zhang D, Sun M, Jiang J. A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing. 2018;287:68–83.CrossRef Wang Z, Ren J, Zhang D, Sun M, Jiang J. A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing. 2018;287:68–83.CrossRef
7.
Zurück zum Zitat Li S, Jiang L, Wu X, Han W, Zhao D, Wang Z. A weighted network community detection algorithm based on deep learning. Appl Math Comput. 2021;401:126012. Li S, Jiang L, Wu X, Han W, Zhao D, Wang Z. A weighted network community detection algorithm based on deep learning. Appl Math Comput. 2021;401:126012.
8.
Zurück zum Zitat Han W, Tian Z, Zhu C, Huang Z, Jia Y, Guizani M. A topic representation model for online social networks based on hybrid human-artificial intelligence. IEEE Trans Comput Soc Syst. 2019;8:191–200.CrossRef Han W, Tian Z, Zhu C, Huang Z, Jia Y, Guizani M. A topic representation model for online social networks based on hybrid human-artificial intelligence. IEEE Trans Comput Soc Syst. 2019;8:191–200.CrossRef
9.
Zurück zum Zitat Han W, Tian Z, Huang Z, Li S, Jia Y. Topic representation model based on microblogging behavior analysis. World Wide Web. 2020;23(6):3083–97.CrossRef Han W, Tian Z, Huang Z, Li S, Jia Y. Topic representation model based on microblogging behavior analysis. World Wide Web. 2020;23(6):3083–97.CrossRef
10.
Zurück zum Zitat Verdoliva L. Media forensics and DeepFakes: an overview. IEEE J Sel Top Signal Process. 2020;14(5):910–32.CrossRef Verdoliva L. Media forensics and DeepFakes: an overview. IEEE J Sel Top Signal Process. 2020;14(5):910–32.CrossRef
11.
Zurück zum Zitat Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017. p. 3859–69. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems; 2017. p. 3859–69.
12.
Zurück zum Zitat Zhu K, Chen Y, Ghamisi P, Jia X, Benediktsson JA. Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification. Remote Sens. 2019;11(3):223.CrossRef Zhu K, Chen Y, Ghamisi P, Jia X, Benediktsson JA. Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification. Remote Sens. 2019;11(3):223.CrossRef
13.
Zurück zum Zitat Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza A, Li J, Pla F. Capsule networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 2018;57(4):2145–60.CrossRef Paoletti ME, Haut JM, Fernandez-Beltran R, Plaza J, Plaza A, Li J, Pla F. Capsule networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 2018;57(4):2145–60.CrossRef
14.
Zurück zum Zitat Zhu Z, Peng G, Chen Y, Gao H. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing. 2019;323:62–75.CrossRef Zhu Z, Peng G, Chen Y, Gao H. A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing. 2019;323:62–75.CrossRef
15.
Zurück zum Zitat Bregler C, Covell M, Slaney M. Video rewrite: driving visual speech with audio. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques; 1997. p. 353–60. Bregler C, Covell M, Slaney M. Video rewrite: driving visual speech with audio. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques; 1997. p. 353–60.
16.
Zurück zum Zitat Alexander O, Rogers M, Lambeth W, Chiang JY, Ma WC, Wang CC, Debevec P. The Digital Emily Project: achieving a photorealistic digital actor. IEEE Comput Graph Appl. 2010;30(4):20–31.CrossRef Alexander O, Rogers M, Lambeth W, Chiang JY, Ma WC, Wang CC, Debevec P. The Digital Emily Project: achieving a photorealistic digital actor. IEEE Comput Graph Appl. 2010;30(4):20–31.CrossRef
17.
Zurück zum Zitat Dale K, Sunkavalli K, Johnson MK, Vlasic D, Matusik W, Pfister H. Video face replacement. ACM Trans Graph. 2011;30(6):1–10.CrossRef Dale K, Sunkavalli K, Johnson MK, Vlasic D, Matusik W, Pfister H. Video face replacement. ACM Trans Graph. 2011;30(6):1–10.CrossRef
18.
Zurück zum Zitat Garrido P, Valgaerts L, Sarmadi H, Steiner I, Varanasi K, Perez P, Theobalt C. VDub: modifying face video of actors for plausible visual alignment to a dubbed audio track. Comput Graph Forum. 2015;34(2):193–204.CrossRef Garrido P, Valgaerts L, Sarmadi H, Steiner I, Varanasi K, Perez P, Theobalt C. VDub: modifying face video of actors for plausible visual alignment to a dubbed audio track. Comput Graph Forum. 2015;34(2):193–204.CrossRef
19.
Zurück zum Zitat Thies J, Zollhöfer M, Nießner M, Valgaerts L, Stamminger M, Theobalt C. Real-time expression transfer for facial reenactment. ACM Trans Graph. 2015;34(6):183–91.CrossRef Thies J, Zollhöfer M, Nießner M, Valgaerts L, Stamminger M, Theobalt C. Real-time expression transfer for facial reenactment. ACM Trans Graph. 2015;34(6):183–91.CrossRef
21.
Zurück zum Zitat Thies J, Zollhöfer M, Theobalt C, Stamminger M, Nießner M. HeadOn: real-time reenactment of human portrait videos. ACM Trans Graph. 2018;37(4):1–3.CrossRef Thies J, Zollhöfer M, Theobalt C, Stamminger M, Nießner M. HeadOn: real-time reenactment of human portrait videos. ACM Trans Graph. 2018;37(4):1–3.CrossRef
22.
Zurück zum Zitat Kim H, Elgharib M, Zollhöfer M, Seidel HP, Beeler T, Richardt C, Theobalt C. Neural style-preserving visual dubbing. ACM Trans Graph. 2019;38(6):1–3. Kim H, Elgharib M, Zollhöfer M, Seidel HP, Beeler T, Richardt C, Theobalt C. Neural style-preserving visual dubbing. ACM Trans Graph. 2019;38(6):1–3.
23.
Zurück zum Zitat Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM. 2020;63(11):139–44.MathSciNetCrossRef Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM. 2020;63(11):139–44.MathSciNetCrossRef
24.
Zurück zum Zitat Nirkin Y, Keller Y, Hassner T. FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 7184–93. Nirkin Y, Keller Y, Hassner T. FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF international conference on computer vision; 2019. p. 7184–93.
25.
Zurück zum Zitat Tripathy S, Kannala J, Rahtu E. ICface: interpretable and controllable face reenactment using GANs. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2020. p. 3385–94. Tripathy S, Kannala J, Rahtu E. ICface: interpretable and controllable face reenactment using GANs. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2020. p. 3385–94.
27.
Zurück zum Zitat Thies J, Zollhofer M, Stamminger M, Theobalt C, Nießner M. Face2Face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2387–95. Thies J, Zollhofer M, Stamminger M, Theobalt C, Nießner M. Face2Face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 2387–95.
29.
Zurück zum Zitat Thies J, Zollhöfer M, Nießner M. Deferred neural rendering: image synthesis using neural textures. ACM Trans Graph. 2019;38(4):1–2.CrossRef Thies J, Zollhöfer M, Nießner M. Deferred neural rendering: image synthesis using neural textures. ACM Trans Graph. 2019;38(4):1–2.CrossRef
30.
Zurück zum Zitat Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2012;7(3):868–82.CrossRef Fridrich J, Kodovsky J. Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur. 2012;7(3):868–82.CrossRef
31.
Zurück zum Zitat Cozzolino D, Poggi G, Verdoliva L. Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security; 2017. p. 159–164. Cozzolino D, Poggi G, Verdoliva L. Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security; 2017. p. 159–164.
32.
Zurück zum Zitat Lyu S, Pan X, Zhang X. Exposing region splicing forgeries with blind local noise estimation. Int J Comput Vis. 2014;110(2):202–21.CrossRef Lyu S, Pan X, Zhang X. Exposing region splicing forgeries with blind local noise estimation. Int J Comput Vis. 2014;110(2):202–21.CrossRef
33.
Zurück zum Zitat Popescu AC, Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans Signal Process. 2005;53(10):3948–59.MathSciNetCrossRefMATH Popescu AC, Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans Signal Process. 2005;53(10):3948–59.MathSciNetCrossRefMATH
34.
Zurück zum Zitat Gallagher AC, Chen T. Image authentication by detecting traces of demosaicing. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008; IEEE. p. 1–8. Gallagher AC, Chen T. Image authentication by detecting traces of demosaicing. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008; IEEE. p. 1–8.
35.
Zurück zum Zitat Dirik AE, Nasir M. Image tamper detection based on demosaicing artifacts. In: 16th IEEE International Conference on Image Processing (ICIP). IEEE; 2009. Dirik AE, Nasir M. Image tamper detection based on demosaicing artifacts. In: 16th IEEE International Conference on Image Processing (ICIP). IEEE; 2009.
36.
Zurück zum Zitat Ho JS, Au OC, Zhou J, Guo Y. Inter-channel demosaicking traces for digital image forensics. In: 2010 IEEE International Conference on Multimedia and Expo. IEEE; 2010. p. 1475–80. Ho JS, Au OC, Zhou J, Guo Y. Inter-channel demosaicking traces for digital image forensics. In: 2010 IEEE International Conference on Multimedia and Expo. IEEE; 2010. p. 1475–80.
37.
Zurück zum Zitat Bianchi T, Piva A. Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans Inf Forensics Secur. 2012;7(3):1003–17.CrossRef Bianchi T, Piva A. Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans Inf Forensics Secur. 2012;7(3):1003–17.CrossRef
38.
Zurück zum Zitat Fan Z, De Queiroz RL. Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans Image Process. 2003;12(2):230–5.CrossRef Fan Z, De Queiroz RL. Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans Image Process. 2003;12(2):230–5.CrossRef
39.
Zurück zum Zitat Luo W, Qu Z, Huang J, Qiu G. A novel method for detecting cropped and recompressed image block. In: 2007 IEEE International Conference on Acoustics Speech and Signal Processing-ICASSP’07. IEEE; 2007. (Vol. 2, pp. II-217). Luo W, Qu Z, Huang J, Qiu G. A novel method for detecting cropped and recompressed image block. In: 2007 IEEE International Conference on Acoustics Speech and Signal Processing-ICASSP’07. IEEE; 2007. (Vol. 2, pp. II-217).
40.
Zurück zum Zitat Li W, Yuan Y, Yu N. Passive detection of doctored JPEG image via block artifact grid extraction. Signal Process. 2009;89(9):1821–9.CrossRefMATH Li W, Yuan Y, Yu N. Passive detection of doctored JPEG image via block artifact grid extraction. Signal Process. 2009;89(9):1821–9.CrossRefMATH
41.
Zurück zum Zitat Lin Z, He J, Tang X, Tang CK. Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognit. 2009;42(11):2492–501.CrossRefMATH Lin Z, He J, Tang X, Tang CK. Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognit. 2009;42(11):2492–501.CrossRefMATH
42.
Zurück zum Zitat Iakovidou C, Zampoglou M, Papadopoulos S, Kompatsiaris Y. Content-aware detection of JPEG grid inconsistencies for intuitive image forensics. J Vis Commun Image Represent. 2018;54:155–70.CrossRef Iakovidou C, Zampoglou M, Papadopoulos S, Kompatsiaris Y. Content-aware detection of JPEG grid inconsistencies for intuitive image forensics. J Vis Commun Image Represent. 2018;54:155–70.CrossRef
43.
Zurück zum Zitat Zhou P, Han X, Morariu VI, Davis LS. Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE; 2017. p. 1831–9. Zhou P, Han X, Morariu VI, Davis LS. Two-stream neural networks for tampered face detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE; 2017. p. 1831–9.
44.
Zurück zum Zitat Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans Geosci Remote Sens. 2015;53(8):4418–33.CrossRef Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans Geosci Remote Sens. 2015;53(8):4418–33.CrossRef
45.
Zurück zum Zitat Güera D, Delp EJ. DeepFake video detection using recurrent neural networks. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE; 2018. p. 1–6. Güera D, Delp EJ. DeepFake video detection using recurrent neural networks. In: 2018 15th IEEE international conference on advanced video and signal based surveillance (AVSS). IEEE; 2018. p. 1–6.
46.
Zurück zum Zitat Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI). 2019;3(1):80–7. Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI). 2019;3(1):80–7.
47.
Zurück zum Zitat Nguyen HH, Tieu TN, Nguyen-Son HQ, Nozick V, Yamagishi J, Echizen I. Modular convolutional neural network for discriminating between computer-generated images and photographic images. In: Proceedings of the 13th international conference on availability, reliability and security; 2018. p. 1–10. Nguyen HH, Tieu TN, Nguyen-Son HQ, Nozick V, Yamagishi J, Echizen I. Modular convolutional neural network for discriminating between computer-generated images and photographic images. In: Proceedings of the 13th international conference on availability, reliability and security; 2018. p. 1–10.
49.
Zurück zum Zitat Nguyen HH, Yamagishi J, Echizen I. Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2019. p. 2307–2311. Nguyen HH, Yamagishi J, Echizen I. Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2019. p. 2307–2311.
51.
Zurück zum Zitat Amerini I, Galteri L, Caldelli R, Del Bimbo A. DeepFake video detection through optical flow based CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops; 2019. Amerini I, Galteri L, Caldelli R, Del Bimbo A. DeepFake video detection through optical flow based CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops; 2019.
52.
Zurück zum Zitat Rossler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. p. 1–11. Rossler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Nießner M. FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. p. 1–11.
54.
Zurück zum Zitat Li L, Bao J, Zhang T, Yang H, Chen D, Wen F, Guo B. Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 5001–10. Li L, Bao J, Zhang T, Yang H, Chen D, Wen F, Guo B. Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 5001–10.
55.
Zurück zum Zitat Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499–503.CrossRef Zhang K, Zhang Z, Li Z, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process Lett. 2016;23(10):1499–503.CrossRef
56.
Zurück zum Zitat Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018). IEEE; 2018. p. 67–74. Cao Q, Shen L, Xie W, Parkhi OM, Zisserman A. VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018). IEEE; 2018. p. 67–74.
57.
Zurück zum Zitat Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence; 2017. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence; 2017.
58.
Zurück zum Zitat Li S, Zhao D, Wu X, Tian Z, Li A, Wang Z. Functional immunization of networks based on message passing. Appl Math Comput. 2020;366:124728. Li S, Zhao D, Wu X, Tian Z, Li A, Wang Z. Functional immunization of networks based on message passing. Appl Math Comput. 2020;366:124728.
59.
Zurück zum Zitat Rahmouni N, Nozick V, Yamagishi J, Echizen I. Distinguishing computer graphics from natural images using convolution neural networks. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS). IEEE; 2017. p. 1–6. Rahmouni N, Nozick V, Yamagishi J, Echizen I. Distinguishing computer graphics from natural images using convolution neural networks. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS). IEEE; 2017. p. 1–6.
60.
Zurück zum Zitat Bayar B, Stamm MC. A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security; 2016. p. 5–10. Bayar B, Stamm MC. A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM workshop on information hiding and multimedia security; 2016. p. 5–10.
62.
Zurück zum Zitat Baek JY, Yoo YS, Bae SH. Generative adversarial ensemble learning for face forensics. IEEE Access. 2020;8:45421–31.CrossRef Baek JY, Yoo YS, Bae SH. Generative adversarial ensemble learning for face forensics. IEEE Access. 2020;8:45421–31.CrossRef
63.
Zurück zum Zitat Afchar D, Nozick V, Yamagishi J, Echizen I. MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE; 2018. p. 1–7. Afchar D, Nozick V, Yamagishi J, Echizen I. MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS). IEEE; 2018. p. 1–7.
Metadaten
Titel
IR-Capsule: Two-Stream Network for Face Forgery Detection
verfasst von
Kaihan Lin
Weihong Han
Shudong Li
Zhaoquan Gu
Huimin Zhao
Jinchang Ren
Li Zhu
Jujian Lv
Publikationsdatum
02.06.2022
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 1/2023
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10008-4