Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2017

15.07.2015 | ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Is there a resource constraint related to lithium ion batteries in cars?

verfasst von: Alexandra Pehlken, Sabine Albach, Thomas Vogt

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

The concept of electro mobility is gaining importance and has become more dynamic in recent years, particularly in developed economies. Besides a significant reduction of mobility-related CO2 emissions, electro mobility is also expected to minimize the current dependence on oil, while maximizing energy conversion efficiency. However, the associated shift in resource requirements towards so-called strategic metals gives reason to suspect that trade-offs could threaten the desired merits of e-mobility with regard to sustainability. This study aims to give a more comprehensive understanding of the challenges—including the issue of uncertainties—which the broad implementation of e-mobility could place on resource availability and especially on a sustainable management of special metals for the high voltage traction batteries forming the heart of the electric powertrain.

Methods

Future metal flows for three possible cathode materials containing the special metals lithium and cobalt are estimated in this paper by means of a Material Flow Analysis. Using two scenarios (dominant and pluralistic) projecting the annual demand for electric vehicles until 2050 and the free software STAN in order to perform the calculation steps to build up the model for the analysis, the MFA considers the resource input requirements based on annual vehicle registrations and the consequent energy requirements.

Results and discussion

The results indicate continuously rising lithium requirements with a wide variation in absolute terms depending on the scenario, which can be considered symptomatic for the uncertainty regarding the development of e-mobility. In the case of cobalt, the projected demand trajectories differ even more drastically between the two scenarios. In comparison to lithium though, for both scenarios cobalt requirements in absolute terms are much less than lithium requirements. With a view to currently known reserves, the cumulative demand for battery technology projected in the dominant scenario will consume 74–248 % (for two different cases) of the lithium reserves and 50 % of the cobalt reserves by 2050.

Conclusions

Despite significant differences between the examined scenarios, it becomes clear that e-mobility will be an increased driver for cobalt and particularly lithium demand in the future. Exact increases in demand for both metals are difficult to predict, especially due to the necessity of numerous assumptions, such as recycling rates, as well as data availability and quality. The results of this study imply a shift from managing primary resources, resource uses, and waste separately, towards managing materials, i.e., resource flows and their implications over the entire life cycle.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here only referring to Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV).
 
2
As an explicit example. Note that lithium contents vary among different lithium sources.
 
Literatur
Zurück zum Zitat Abraham D, Knuth J, Dees D, Bloom I, Christophersen J (2007) Degradation of high-power lithium-ion cells—electrochemistry of harvested electrodes. J Pow Sources 170(2):465–475CrossRef Abraham D, Knuth J, Dees D, Bloom I, Christophersen J (2007) Degradation of high-power lithium-ion cells—electrochemistry of harvested electrodes. J Pow Sources 170(2):465–475CrossRef
Zurück zum Zitat Allen F, Halloran P, Leith A, Clare Lindsay M (2009) Using material flow analysis for sustainable materials management. J Ind Ecol 13(5):662–665 Allen F, Halloran P, Leith A, Clare Lindsay M (2009) Using material flow analysis for sustainable materials management. J Ind Ecol 13(5):662–665
Zurück zum Zitat Andersson B, Råde I (2001) Metal resource constraints for electric-vehicle batteries. Transp Res Part D: Transp Environ 6:297–324CrossRef Andersson B, Råde I (2001) Metal resource constraints for electric-vehicle batteries. Transp Res Part D: Transp Environ 6:297–324CrossRef
Zurück zum Zitat Angerer G, Marscheider-Weidemann F, Lüllmann A, Erdmann L, Scharp M, Handke V et al. (2009a) Rohstoffe für Zukunftstechnologien. Fraunhofer Institut für System- und Innovationsforschung (ISI); Institut für Zukunftsstudien und Technologiebewertung (IZT). Stuttgart: Fraunhofer IRB Verlag Angerer G, Marscheider-Weidemann F, Lüllmann A, Erdmann L, Scharp M, Handke V et al. (2009a) Rohstoffe für Zukunftstechnologien. Fraunhofer Institut für System- und Innovationsforschung (ISI); Institut für Zukunftsstudien und Technologiebewertung (IZT). Stuttgart: Fraunhofer IRB Verlag
Zurück zum Zitat Angerer G, Marscheider-Weidemann F, Wendl M, Wietschel M (2009b) Lithium für Zukunftstechnologien - Nachfrage und Angebot unter besonderer Berücksichtigung der Elektromobilität. Fraunhofer ISI, Fraunhofer Systemforschung Elektromobilität (FSEM) & Innovationsallianz-Lithium-Ionen-Batterie (LIB2015), Karlsruhe Angerer G, Marscheider-Weidemann F, Wendl M, Wietschel M (2009b) Lithium für Zukunftstechnologien - Nachfrage und Angebot unter besonderer Berücksichtigung der Elektromobilität. Fraunhofer ISI, Fraunhofer Systemforschung Elektromobilität (FSEM) & Innovationsallianz-Lithium-Ionen-Batterie (LIB2015), Karlsruhe
Zurück zum Zitat Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O et al (2007) Climate change 2007: synthesis report. IPCC, Valencia Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O et al (2007) Climate change 2007: synthesis report. IPCC, Valencia
Zurück zum Zitat Brandl M, Gall H, Wenger M, Lorentz V, Giegerich M, Baronti F et al. (2012) Batteries and battery management systems for electric vehicles. 2012 Design, Automation and Test in Europe Conf and Exhibition, pp 971–976 Brandl M, Gall H, Wenger M, Lorentz V, Giegerich M, Baronti F et al. (2012) Batteries and battery management systems for electric vehicles. 2012 Design, Automation and Test in Europe Conf and Exhibition, pp 971–976
Zurück zum Zitat Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz R (2011) Aging mechanism in Li ion cells and calendar life predictions. J Pow Sources 97–98:13–21 Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz R (2011) Aging mechanism in Li ion cells and calendar life predictions. J Pow Sources 97–98:13–21
Zurück zum Zitat Brunner P, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, Boca Raton Brunner P, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, Boca Raton
Zurück zum Zitat Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. Öko-Institut e.V.; UNEP; United Nations University Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. Öko-Institut e.V.; UNEP; United Nations University
Zurück zum Zitat Buchert M, Jenseit W, Dittrich S, Hacker F, Schüler-Hainsch E, Ruhland K et al. (2011) Ressourceneffizienz und ressourcenpolitische Aspekte des Systems Elektromobilität. Arbeitspaket 7 des Forschungsvorhabens OPTUM, Öko-Institut e.V.;Umicore; TU Clausthal; Daimler AG, Darmstadt Buchert M, Jenseit W, Dittrich S, Hacker F, Schüler-Hainsch E, Ruhland K et al. (2011) Ressourceneffizienz und ressourcenpolitische Aspekte des Systems Elektromobilität. Arbeitspaket 7 des Forschungsvorhabens OPTUM, Öko-Institut e.V.;Umicore; TU Clausthal; Daimler AG, Darmstadt
Zurück zum Zitat Bundesregierung D (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. Germany, Berlin Bundesregierung D (2009) Nationaler Entwicklungsplan Elektromobilität der Bundesregierung. Germany, Berlin
Zurück zum Zitat Cencic O, Rechberger H (2008) Material flow analysis with software STAN. J Env Eng Manag 18(1):3–7 Cencic O, Rechberger H (2008) Material flow analysis with software STAN. J Env Eng Manag 18(1):3–7
Zurück zum Zitat Dijkema G, Reuter M, Verhoef E (2000) A new paradigm in waste management. Waste Manag 20(8):633–638 Dijkema G, Reuter M, Verhoef E (2000) A new paradigm in waste management. Waste Manag 20(8):633–638
Zurück zum Zitat Evans K (2014) Lithium. In: Gunn G (ed) Critical metals handbook, 1st edn. Wiley, Keyworth, Nottingham, UK, pp 230–260 Evans K (2014) Lithium. In: Gunn G (ed) Critical metals handbook, 1st edn. Wiley, Keyworth, Nottingham, UK, pp 230–260
Zurück zum Zitat Fulton L, Eads G (2004) IEA/SMP model documentation and reference case projection. WBCSD, WBCSD Fulton L, Eads G (2004) IEA/SMP model documentation and reference case projection. WBCSD, WBCSD
Zurück zum Zitat Gaines L, Cuenca R (2000) Costs of lithium-ion batteries for vehicles. Argonne National Laboratory, Center for Transportation Research, Argonne, IL, USA Gaines L, Cuenca R (2000) Costs of lithium-ion batteries for vehicles. Argonne National Laboratory, Center for Transportation Research, Argonne, IL, USA
Zurück zum Zitat Gerssen-Gondelach S, Faaij A (2012) Performance of batteries for electric vehicles on short and longer term. J Pow Sources 212:111–129CrossRef Gerssen-Gondelach S, Faaij A (2012) Performance of batteries for electric vehicles on short and longer term. J Pow Sources 212:111–129CrossRef
Zurück zum Zitat Gruber P, Medina P, Keoleian G, Kesler SE, Wallington T (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15:760–775 Gruber P, Medina P, Keoleian G, Kesler SE, Wallington T (2011) Global lithium availability: a constraint for electric vehicles? J Ind Ecol 15:760–775
Zurück zum Zitat Hagelüken C, Meskers C (2010) Complex life cycles of precious and special metals. In: Graedel T, van der Voet E (eds) Linkages of sustainability. The MIT Press, Cambridge, pp 163–197 Hagelüken C, Meskers C (2010) Complex life cycles of precious and special metals. In: Graedel T, van der Voet E (eds) Linkages of sustainability. The MIT Press, Cambridge, pp 163–197
Zurück zum Zitat Hayner C, Zhao X, Kung H (2012) Materials for rechargeable lithium-ion batteries. Ann Rev Chem Biomolecu Eng 3:445–471CrossRef Hayner C, Zhao X, Kung H (2012) Materials for rechargeable lithium-ion batteries. Ann Rev Chem Biomolecu Eng 3:445–471CrossRef
Zurück zum Zitat Huggins R (2009) Advanced batteries—material science aspects. Springer, New York Huggins R (2009) Advanced batteries—material science aspects. Springer, New York
Zurück zum Zitat IRP (2012) Responsible resource management for a sustainable world: Findings from the International Resource Panel. United Nations Environment Programme IRP (2012) Responsible resource management for a sustainable world: Findings from the International Resource Panel. United Nations Environment Programme
Zurück zum Zitat Kaiser O, Eickenbusch H, Grimm V, Zweck (2008) Zukunft des Autos. Zukünftige Technologien Consulting der VDI Technologiezentrum GmbH, Düsseldorf, Germany Kaiser O, Eickenbusch H, Grimm V, Zweck (2008) Zukunft des Autos. Zukünftige Technologien Consulting der VDI Technologiezentrum GmbH, Düsseldorf, Germany
Zurück zum Zitat Kesler S, Gruber P, Medina P, Keoleian G, Everson M, Wallington T (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geolog Rev 48:55–69CrossRef Kesler S, Gruber P, Medina P, Keoleian G, Everson M, Wallington T (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geolog Rev 48:55–69CrossRef
Zurück zum Zitat Konietzko S, Gernuks M (2011) Ressourcenverfügbarkeit von sekundären Rohstoffen - Potenzialanalyse für Lithium und Kobalt. LiBRi; LithoRec Konietzko S, Gernuks M (2011) Ressourcenverfügbarkeit von sekundären Rohstoffen - Potenzialanalyse für Lithium und Kobalt. LiBRi; LithoRec
Zurück zum Zitat Kushnir D, Sandén B (2012) The time dimension and lithium resource constraints for electric vehicles. Res Pol 37(1):93–103CrossRef Kushnir D, Sandén B (2012) The time dimension and lithium resource constraints for electric vehicles. Res Pol 37(1):93–103CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins T, Hammer Stromman A (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electrical vehicles. Supporting information. Environ Sci Technol 45(10):4548–4553CrossRef Majeau-Bettez G, Hawkins T, Hammer Stromman A (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electrical vehicles. Supporting information. Environ Sci Technol 45(10):4548–4553CrossRef
Zurück zum Zitat Menzie D, Soto-Viruet Y, Bermúdez-Lugo O, Mobbs PM, Perez AA, Taib M, Wacaster S, and Staff (2013) Review of selected global mineral industries in 2011 and an outlook to 2017: U.S. Geological Survey Open-File Report 2013–1091, 33 p., http://pubs.usgs.gov/of/2013/1091, accessed June 19th, 2015 Menzie D, Soto-Viruet Y, Bermúdez-Lugo O, Mobbs PM, Perez AA, Taib M, Wacaster S, and Staff (2013) Review of selected global mineral industries in 2011 and an outlook to 2017: U.S. Geological Survey Open-File Report 2013–1091, 33 p., http://​pubs.​usgs.​gov/​of/​2013/​1091, accessed June 19th, 2015
Zurück zum Zitat Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation. A Comprehen Rev Hydrometallurgy 150(IF-2.12):192–208CrossRef Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation. A Comprehen Rev Hydrometallurgy 150(IF-2.12):192–208CrossRef
Zurück zum Zitat Mondal P, Kumar A, Agarval V, Sharma N, Vijay P, Bhangale U et al (2011) Critical review of trends in GHG emissions from global automotive sector. Brit J Env Climate Change 1(1):1–12CrossRef Mondal P, Kumar A, Agarval V, Sharma N, Vijay P, Bhangale U et al (2011) Critical review of trends in GHG emissions from global automotive sector. Brit J Env Climate Change 1(1):1–12CrossRef
Zurück zum Zitat Notter D, Gauch M, Widmer R, Wäger P, Stamp A, Zah R et al (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Supporting information. Environ Sci Technol 44(17):6550–6556CrossRef Notter D, Gauch M, Widmer R, Wäger P, Stamp A, Zah R et al (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Supporting information. Environ Sci Technol 44(17):6550–6556CrossRef
Zurück zum Zitat NPE (2012) Fortschrittsbericht der Nationalen Plattform für Elektromobilität (Dritter Bericht). NPE & GGEMO. Berlin, Germany: BMVBS NPE (2012) Fortschrittsbericht der Nationalen Plattform für Elektromobilität (Dritter Bericht). NPE & GGEMO. Berlin, Germany: BMVBS
Zurück zum Zitat Peters A, Doll C, Plötz P, Sauer A, Schade W, Thielmann A et al. (2013) Konzepte der Elektromobilität - Ihre Bedeutung für Wirtschaft, Gesellschaft und Umwelt. (B. f. (TAB), Ed.) Berlin: edition sigma Peters A, Doll C, Plötz P, Sauer A, Schade W, Thielmann A et al. (2013) Konzepte der Elektromobilität - Ihre Bedeutung für Wirtschaft, Gesellschaft und Umwelt. (B. f. (TAB), Ed.) Berlin: edition sigma
Zurück zum Zitat Pollet B, Staffell I, Shang J (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electroch Acta 84:235–249CrossRef Pollet B, Staffell I, Shang J (2012) Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electroch Acta 84:235–249CrossRef
Zurück zum Zitat Roberts S, Gunn G (2014) Cobalt. In Gunn, G (ed) Critical metals handbook, 1st edn. John Wiley & Sons, Keyworth, Nottingham, UK, pp 122–147 Roberts S, Gunn G (2014) Cobalt. In Gunn, G (ed) Critical metals handbook, 1st edn. John Wiley & Sons, Keyworth, Nottingham, UK, pp 122–147
Zurück zum Zitat Scrosati B (2000) Recent advances in lithium ion battery materials. Electroch Acta 45:2461–2466CrossRef Scrosati B (2000) Recent advances in lithium ion battery materials. Electroch Acta 45:2461–2466CrossRef
Zurück zum Zitat Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Pow Sources 195:2419–2430CrossRef Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Pow Sources 195:2419–2430CrossRef
Zurück zum Zitat Stahel W (2006) The role of metals for designing products and solutions in the context of a sustainable society. In von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 593–607 Stahel W (2006) The role of metals for designing products and solutions in the context of a sustainable society. In von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 593–607
Zurück zum Zitat Thielmann A, Isenmann R, Wietschel M (2010) Technologie-Roadmap Lithium-Ionen-Batterien 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany: Fraunhofer Verlag Thielmann A, Isenmann R, Wietschel M (2010) Technologie-Roadmap Lithium-Ionen-Batterien 2030. Fraunhofer-Institut für System- und Innovationsforschung (ISI). Karlsruhe, Germany: Fraunhofer Verlag
Zurück zum Zitat Thielmann A, Sauer A, Isenmann R, Wietschel M (2012) Technologie-Roadmap Energiespeicher für die Elektromobilität. Fraunhofer-Institut für System- und Innovationsforschung, Karlsruhe, Germany Thielmann A, Sauer A, Isenmann R, Wietschel M (2012) Technologie-Roadmap Energiespeicher für die Elektromobilität. Fraunhofer-Institut für System- und Innovationsforschung, Karlsruhe, Germany
Zurück zum Zitat Tie S, Tan C (2013) A review of energy sources and energy management system in electric vehicles. Renew Sust Energy Rev 20:82–102CrossRef Tie S, Tan C (2013) A review of energy sources and energy management system in electric vehicles. Renew Sust Energy Rev 20:82–102CrossRef
Zurück zum Zitat U.S. Geological Survey (2015) Mineral commodity summaries 2015: U.S. Geological Survey, 10.3133/70140094, accessed June 19th, 2015 U.S. Geological Survey (2015) Mineral commodity summaries 2015: U.S. Geological Survey, 10.​3133/​70140094, accessed June 19th, 2015
Zurück zum Zitat Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266CrossRef Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266CrossRef
Zurück zum Zitat von Gleich A (2006) Outlines of Sustainable Metals Industry. In: von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 4–40CrossRef von Gleich A (2006) Outlines of Sustainable Metals Industry. In: von Gleich A, Ayres R, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 4–40CrossRef
Zurück zum Zitat Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43:481–496CrossRef Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43:481–496CrossRef
Zurück zum Zitat Winter M, Brodd R (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRef Winter M, Brodd R (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRef
Zurück zum Zitat Ziemann S, Mueller D, Grunwald A, Schebek L, Weil M (2014) Rohstoffverfügbarkeit für ein zukünftiges Mobilitäts- und Energiesystem - Was können Untersuchungen der Rohstoffkreisläufe beitragen? In: Teipel U, Reller A (eds) 3. Symp Rohstoffeffizienz und Rohstoffinnovationen. Stuttgart: Fraunhofer Verlag, pp 405–417 Ziemann S, Mueller D, Grunwald A, Schebek L, Weil M (2014) Rohstoffverfügbarkeit für ein zukünftiges Mobilitäts- und Energiesystem - Was können Untersuchungen der Rohstoffkreisläufe beitragen? In: Teipel U, Reller A (eds) 3. Symp Rohstoffeffizienz und Rohstoffinnovationen. Stuttgart: Fraunhofer Verlag, pp 405–417
Metadaten
Titel
Is there a resource constraint related to lithium ion batteries in cars?
verfasst von
Alexandra Pehlken
Sabine Albach
Thomas Vogt
Publikationsdatum
15.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0925-4

Weitere Artikel der Ausgabe 1/2017

The International Journal of Life Cycle Assessment 1/2017 Zur Ausgabe

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Environmental trade-offs across cascading lithium-ion battery life cycles

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Preface