Skip to main content
Erschienen in: Cellulose 12/2019

27.06.2019 | Original Research

Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard

verfasst von: Seyed Mehdi Yousefhashemi, Amir Khosravani, Hossein Yousefi

Erschienen in: Cellulose | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, many studies have been carried out on the use of cellulose nanofiber (CNF) produced from virgin fiber as a strengthening agent for improving the physical and mechanical properties of paper, while the use of CNF isolated from bleached virgin fiber is not necessary or reasonable for many recycled/impure products. In this due, novel lignocellulose nanofiber (LCNF) was produced from inexpensive recycled old corrugated container pulp by the ultra-fine grinding technique. The diameter of the resulted LCNF was in the range of 10–80 nm, while the cellulose crystallinity index and crystallite size reduced during the process to 49% and 4 nm, respectively. Regarding the chemical composition of LCNF, no significant change was observed in comparison to OCC fiber. But, an obstacle for the application of nanofibers, especially for paperboards, is dewatering problem. Accordingly, it was tried to evaluate the potential of cationic starch–anionic nanosilica combination as a drainage/retention aid to compensate for the negative effects of applying nanofibers in the pulp suspension, meanwhile the combination enhances the gains of LCNF application. The evaluation of pulp freeness showed that the addition of 3% nanofibers reduced dewatering ability about 100 ml CSF (around 33% loss). But, interaction of the nanosilica–starch system with the furnish containing LCNF not only compensated for the freeness reduction, but also caused a 32% or 57% increase in tensile index, in comparison to sample containing LCNF or control pulp respectively. Moreover, the addition of starch–nanosilica system with LCNF to pulp suspension, improved the retention of fine materials. Also, LCNF caused a reduction in thickness, bulk and bending resistance index of paperboard, while employment of the starch–nanosilica combination somehow off-set these negative effects. In addition, as a result of the cationic starch–anionic nanosilica system, the tear index was improved.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166CrossRef Brodin FW, Gregersen OW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material—a review. Nord Pulp Pap Res J 29:156–166CrossRef
Zurück zum Zitat Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283CrossRef Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll 13:275–283CrossRef
Zurück zum Zitat Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin, p 66CrossRef Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin, p 66CrossRef
Zurück zum Zitat Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef
Zurück zum Zitat Ek M, Göran G, Gunnar H (2009) Volume 4 paper products physics and technology. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and technology. Walter de Gruyter, Berlin Ek M, Göran G, Gunnar H (2009) Volume 4 paper products physics and technology. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and technology. Walter de Gruyter, Berlin
Zurück zum Zitat Ferrer A, Quintana E, Filpponen I et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193CrossRef Ferrer A, Quintana E, Filpponen I et al (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193CrossRef
Zurück zum Zitat González I, Boufi S, Pèlach MA et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef González I, Boufi S, Pèlach MA et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7:5167–5180CrossRef
Zurück zum Zitat Hubbe MA (2005) Microparticle programs for drainage and retention. Micro Nanoparticles Papermak TAPPI Press, Atlanta, pp 1–36 Hubbe MA (2005) Microparticle programs for drainage and retention. Micro Nanoparticles Papermak TAPPI Press, Atlanta, pp 1–36
Zurück zum Zitat Hult E-L, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110CrossRef Hult E-L, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110CrossRef
Zurück zum Zitat Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026CrossRef Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromol 9:1022–1026CrossRef
Zurück zum Zitat Jiang Y, Liu X, Yang Q et al (2018) Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 25:6479–6494CrossRef Jiang Y, Liu X, Yang Q et al (2018) Effects of residual lignin on mechanical defibrillation process of cellulosic fiber for producing lignocellulose nanofibrils. Cellulose 25:6479–6494CrossRef
Zurück zum Zitat Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRef Jonoobi M, Oladi R, Davoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRef
Zurück zum Zitat Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356CrossRefPubMed Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356CrossRefPubMed
Zurück zum Zitat Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefPubMed Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefPubMed
Zurück zum Zitat Kim G-Y, Hubbe MA, Kim C-H (2010) Engineering of a wet-end additives program relative to process parameters and to the physical and optical properties of filled paper. Ind Eng Chem Res 49:5644–5653CrossRef Kim G-Y, Hubbe MA, Kim C-H (2010) Engineering of a wet-end additives program relative to process parameters and to the physical and optical properties of filled paper. Ind Eng Chem Res 49:5644–5653CrossRef
Zurück zum Zitat Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef Ling Z, Wang T, Makarem M, Cintrón MS, Cheng HN et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328CrossRef
Zurück zum Zitat Rahmaninia M, Khosravani A (2015) Improving the paper recycling process of old corrugated container wastes. Cellul Chem Technol 49:203–208 Rahmaninia M, Khosravani A (2015) Improving the paper recycling process of old corrugated container wastes. Cellul Chem Technol 49:203–208
Zurück zum Zitat Salkind NJ (2010) Encyclopedia of research design. SAGE, Thousand OaksCrossRef Salkind NJ (2010) Encyclopedia of research design. SAGE, Thousand OaksCrossRef
Zurück zum Zitat Salmi J, Nypelö T, Österberg M, Laine J (2009) Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions. BioResources 4:602–625 Salmi J, Nypelö T, Österberg M, Laine J (2009) Layer structures formed by silica nanoparticles and cellulose nanofibrils with cationic polyacrylamide (C-PAM) on cellulose surface and their influence on interactions. BioResources 4:602–625
Zurück zum Zitat TAPPI Test Methods (2007) 2006–2007, TAPPI Press, Atlanta TAPPI Test Methods (2007) 2006–2007, TAPPI Press, Atlanta
Zurück zum Zitat Wang B, Sain M (2007) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2:371–388 Wang B, Sain M (2007) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2:371–388
Zurück zum Zitat Zhang H, Tong M (2007) Influence of hemicelluloses on the structure and properties of Lyocell fibers. Polym Eng Sci 47:702–706CrossRef Zhang H, Tong M (2007) Influence of hemicelluloses on the structure and properties of Lyocell fibers. Polym Eng Sci 47:702–706CrossRef
Zurück zum Zitat Zhang H, Zhang H, Tong M et al (2008) Comparison of the structures and properties of Lyocell fibers from high hemicellulose pulp and high α-cellulose pulp. J Appl Polym Sci 107:636–641CrossRef Zhang H, Zhang H, Tong M et al (2008) Comparison of the structures and properties of Lyocell fibers from high hemicellulose pulp and high α-cellulose pulp. J Appl Polym Sci 107:636–641CrossRef
Metadaten
Titel
Isolation of lignocellulose nanofiber from recycled old corrugated container and its interaction with cationic starch–nanosilica combination to make paperboard
verfasst von
Seyed Mehdi Yousefhashemi
Amir Khosravani
Hossein Yousefi
Publikationsdatum
27.06.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02562-2

Weitere Artikel der Ausgabe 12/2019

Cellulose 12/2019 Zur Ausgabe