Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.02.2018 | Sonderheft 2/2019

Cluster Computing 2/2019

Iterative Conditional Entropy Kalman filter (ICEKF) for noise reduction and Neuro Optimized Emotional Classifier (NOEC)

Zeitschrift:
Cluster Computing > Sonderheft 2/2019
Autoren:
R. Kumuthaveni, E. Chandra

Abstract

Emotion has a most important aspect in terms of interactions among the humans and this would become ideal for human emotions to get mechanically identified by the machines and primarily for enhancing the communication among the human–machine. In the recent work Enhanced Bat algorithm with Simulated Annealing (EBSA) are introduced for solving emotion recognition problem. Here the removal of noises from the speech samples and reduction in the number of speech features becomes very difficult task which reduces the accuracy of the classifier. To solve this problem this research work involves detection of emotions from speech which stimulates machines understanding human behavioral tasks namely reasoning, decision making and interaction. EBSA is used in the previous system to identify the happy, sad and neutral emotions from speech input. The performance of the previous system has been decreased due to recognition accuracy and feature selection. Improved Artificial Bee Colony (IABC) with Neuro Optimized Emotional Classifier (NOEC) solves this issue in the proposed system. The Iterative Conditional Entropy Kalman filtering (ICEKF) is initially processed to effectively filter the noisy features from the inputted speech data. Mel Frequency Cepstrum Coefficient (MFCC), pitch, energy, intensity and formants are extracted as speech features. Every extracted feature is maintained in the database and annotated along with their emotional class label. IABC algorithm chooses the feature optimally, which in turn employs the best fitness function values. From the optimally selected dataset, the NOEC is processed. Emotions can be identified from the Tamil news speech dataset with the help of the supervised machine learning technique, which demands the training set (collection of emotional speech recordings). Every recording or sample in the dataset is named with the emotional class and they are indicated as n-dimensional vector of spectrum coefficients which in turn is extracted from the Tamil news speech dataset. This dataset is collected from real time via using the search engine sites like Google, YouTube, twitter etc. By implementing IABC with NOEC classification process, the work segregates the emotional classes such as happy, sad, anger, fear and neutral emotions perfectly. From the experimental verification, it is confirmed that the proposed method IABC with NOEC gives better performances with respect to accuracy, precision, recall and f-measure values.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 2/2019

Cluster Computing 2/2019 Zur Ausgabe

Premium Partner

    Bildnachweise