Skip to main content
Erschienen in:

07.10.2024 | Connected Automated Vehicles and ITS, Vision and Sensors

Iterative Trajectory Prediction Model Based on Interactive Agent

verfasst von: Hongpeng Tian, Xiaopei Zhang, Dan Cui

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Though many methods attempt to model how agents interact with each other and their environment, they often fail to capture the dynamic nuances of these interactions. To address this issue, this paper proposes an interactive iterative prediction model based on Transformer (IIPM-BT) that can distinguish between agents and accurately model the interactions between them. The encoder in IIPM-BT includes Map-Transformer and InterAgent-Transformer modules. The Map-Transformer module combines local maps to provide a real-time context for trajectory prediction. The InterAgent-Transformer module captures the interactive information between agents to understand the dynamic relationship between multiple agents. The decoder employs an iterative prediction strategy to refine future trajectories. This model uses the Waymo Open Motion Dataset to train and evaluate. Compared with the HDGT, our model performs significantly better in ADE, MR and MAP indicators, which are reduced by 7.02%, 21.43% and improved by 35.71% respectively. Experimental results show that the model has good performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Azadani, M. N., & Boukerche, A. (2022). A novel multimodal vehicle path prediction method based on temporal convolutional networks. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25384–25395.CrossRefMATH Azadani, M. N., & Boukerche, A. (2022). A novel multimodal vehicle path prediction method based on temporal convolutional networks. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25384–25395.CrossRefMATH
Zurück zum Zitat Deo, N., & Trivedi, M. M. (2018). Convolutional social pooling for vehicle trajectory prediction. In IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), UT, USA. Deo, N., & Trivedi, M. M. (2018). Convolutional social pooling for vehicle trajectory prediction. In IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW), UT, USA.
Zurück zum Zitat Deo, N., Wolff, E., & Beijbom, O. (2022). Multimodal trajectory prediction conditioned on lane-graph traversals. In Proc. of the 5th conference on robot learning (CoRL), London, UK. Deo, N., Wolff, E., & Beijbom, O. (2022). Multimodal trajectory prediction conditioned on lane-graph traversals. In Proc. of the 5th conference on robot learning (CoRL), London, UK.
Zurück zum Zitat Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C., Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., McCauley, A., Shlens, J., & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In IEEE/CVF international conference on computer vision (ICCV), Montreal, QC, Canada. Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C., Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., McCauley, A., Shlens, J., & Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset. In IEEE/CVF international conference on computer vision (ICCV), Montreal, QC, Canada.
Zurück zum Zitat Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., & Chen, H. (2022a). A survey on trajectory-prediction methods for autonomous driving. IEEE Transactions on Intelligent Vehicles, 7(3), 652–674.CrossRefMATH Huang, Y., Du, J., Yang, Z., Zhou, Z., Zhang, L., & Chen, H. (2022a). A survey on trajectory-prediction methods for autonomous driving. IEEE Transactions on Intelligent Vehicles, 7(3), 652–674.CrossRefMATH
Zurück zum Zitat Huang, Z., Mo, X., & Lv, C. (2022b). Recoat: A deep learning-based framework for multi-modal motion prediction in autonomous driving application. In IEEE 25th international conference on intelligent transportation systems (ITSC), Macau, China. Huang, Z., Mo, X., & Lv, C. (2022b). Recoat: A deep learning-based framework for multi-modal motion prediction in autonomous driving application. In IEEE 25th international conference on intelligent transportation systems (ITSC), Macau, China.
Zurück zum Zitat Huang, Z., Liu, H., Wu, J., & Lv, C. (2023a). Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 24(7), 7244–7258.CrossRefMATH Huang, Z., Liu, H., Wu, J., & Lv, C. (2023a). Conditional predictive behavior planning with inverse reinforcement learning for human-like autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 24(7), 7244–7258.CrossRefMATH
Zurück zum Zitat Huang, Z., Liu, H., & Lv, C. (2023b). Gameformer: Game-theoretic modeling and learning of transformer-based interactive prediction and planning for autonomous driving. In IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France. Huang, Z., Liu, H., & Lv, C. (2023b). Gameformer: Game-theoretic modeling and learning of transformer-based interactive prediction and planning for autonomous driving. In IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France.
Zurück zum Zitat Huang, Z., Liu, H., Wu, J., & Lv, C. (2023c). Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving. IEEE Transactions on Neural Networks and Learning Systems 1–15. Huang, Z., Liu, H., Wu, J., & Lv, C. (2023c). Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving. IEEE Transactions on Neural Networks and Learning Systems 1–15.
Zurück zum Zitat Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in Neural Information Processing Systems, 2, 2017–2025.MATH Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in Neural Information Processing Systems, 2, 2017–2025.MATH
Zurück zum Zitat Jia, X., Wu, P., Chen, L., Liu, Y., Li, H., & Yan, J. (2023). Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(11), 13860–13875.CrossRef Jia, X., Wu, P., Chen, L., Liu, Y., Li, H., & Yan, J. (2023). Hdgt: Heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(11), 13860–13875.CrossRef
Zurück zum Zitat Kim, B., Park, S. H., Lee, S., Khoshimjonov, E., Kum, D., Kim, J., Kim, J. S., & Choi, J. W. (2021). LaPred: Lane-aware prediction of multi-modal future trajectories of dynamic agents. In IEEE/CVF conference on computer vision and pattern recognition (CVPR), TN, USA. Kim, B., Park, S. H., Lee, S., Khoshimjonov, E., Kum, D., Kim, J., Kim, J. S., & Choi, J. W. (2021). LaPred: Lane-aware prediction of multi-modal future trajectories of dynamic agents. In IEEE/CVF conference on computer vision and pattern recognition (CVPR), TN, USA.
Zurück zum Zitat Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., & Dai, J. (2022). Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In 17th Eur. Conf. Comput. Vis (ECCV), Tel Aviv, Israel Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., & Dai, J. (2022). Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In 17th Eur. Conf. Comput. Vis (ECCV), Tel Aviv, Israel
Zurück zum Zitat Mozaffari, S., Sormoli, M. A., Koufos, K., & Dianati, M. (2023). Multimodal manoeuvre and trajectory prediction for automated driving on highways using transformer networks. IEEE Robotics and Automation Letters, 8(10), 6123–6130.CrossRefMATH Mozaffari, S., Sormoli, M. A., Koufos, K., & Dianati, M. (2023). Multimodal manoeuvre and trajectory prediction for automated driving on highways using transformer networks. IEEE Robotics and Automation Letters, 8(10), 6123–6130.CrossRefMATH
Zurück zum Zitat Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K. S., & Sapp, B. (2023). Wayformer: Motion forecasting via simple & efficient attention networks. In IEEE international conference on robotics and automation (ICRA), London, UK. Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K. S., & Sapp, B. (2023). Wayformer: Motion forecasting via simple & efficient attention networks. In IEEE international conference on robotics and automation (ICRA), London, UK.
Zurück zum Zitat Ngiam, J., Vasudevan, V., Caine, B., Zhang, Z., Chiang, H. T. L., Ling, J., Reolofs, R., Bewley, A., Liu, C., Venugopal, A., Weiss, D., Sapp, B., Chen, Z., & Shlens, J. (2022). Scene transformer: A unified architecture for predicting future trajectories of multiple agents. In 10th international conference on learning representations (ICLR), virtual. Ngiam, J., Vasudevan, V., Caine, B., Zhang, Z., Chiang, H. T. L., Ling, J., Reolofs, R., Bewley, A., Liu, C., Venugopal, A., Weiss, D., Sapp, B., Chen, Z., & Shlens, J. (2022). Scene transformer: A unified architecture for predicting future trajectories of multiple agents. In 10th international conference on learning representations (ICLR), virtual.
Zurück zum Zitat Wang, J., Chen, Q., & Gong, H. (2020). STMAG: A spatial-temporal mixed attention graph-based convolution model for multi-data flow safety prediction. Information Sciences, 525, 16–36.CrossRefMATH Wang, J., Chen, Q., & Gong, H. (2020). STMAG: A spatial-temporal mixed attention graph-based convolution model for multi-data flow safety prediction. Information Sciences, 525, 16–36.CrossRefMATH
Zurück zum Zitat Yan, H., Ma, X., & Pu, Z. (2021). Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22386–22399.CrossRefMATH Yan, H., Ma, X., & Pu, Z. (2021). Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22386–22399.CrossRefMATH
Zurück zum Zitat Yuan, Y., Weng, X., Ou, Y., & Kitani, K. M. (2021). Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In IEEE/CVF international conference on computer vision (ICCV), Montreak, Canada. Yuan, Y., Weng, X., Ou, Y., & Kitani, K. M. (2021). Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In IEEE/CVF international conference on computer vision (ICCV), Montreak, Canada.
Zurück zum Zitat Zhang, L., Su, P. H., Hoang, J., Haynes, G. C., & Marchetti-Bowick, M. (2021). Map-adaptive goal-based trajectory prediction. In Proc. of the 4th conference on robot learning (CoRL), virtual. Zhang, L., Su, P. H., Hoang, J., Haynes, G. C., & Marchetti-Bowick, M. (2021). Map-adaptive goal-based trajectory prediction. In Proc. of the 4th conference on robot learning (CoRL), virtual.
Zurück zum Zitat Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y. C., Schmid, C., Li, C., & Anguelov, D. (2021). Tnt: Target-driven trajectory prediction. In Proc. of the 4th conference on robot learning (CoRL), virtual. Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y. C., Schmid, C., Li, C., & Anguelov, D. (2021). Tnt: Target-driven trajectory prediction. In Proc. of the 4th conference on robot learning (CoRL), virtual.
Metadaten
Titel
Iterative Trajectory Prediction Model Based on Interactive Agent
verfasst von
Hongpeng Tian
Xiaopei Zhang
Dan Cui
Publikationsdatum
07.10.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00154-z