Skip to main content

2025 | OriginalPaper | Buchkapitel

iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models

verfasst von : Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, Pierre Cléau

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most available data is unstructured, making it challenging to access valuable information. Automatically building Knowledge Graphs (KGs) is crucial for structuring data and making it accessible, allowing users to search for information effectively. KGs also facilitate insights, inference, and reasoning. Traditional NLP methods, such as named entity recognition and relation extraction, are key in information retrieval but face limitations, including predefined entity types and the need for supervised learning. Current research leverages large language models’ capabilities, such as zero- or few-shot learning. However, unresolved and semantically duplicated entities and relations still pose challenges, leading to inconsistent graphs and requiring extensive post-processing. Additionally, most approaches are topic-dependent. In this paper, we propose iText2KG (The code and the dataset are available at https://​github.​com/​AuvaLab/​itext2kg), a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Documents Distiller, Incremental Entities Extractor, Incremental Relations Extractor, and Graph Integrator. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carta, S., Giuliani, A., Piano, L., Podda, A.S., Pompianu, L., Tiddia, S.G.: Iterative zero-shot LLM prompting for knowledge graph construction. arXiv preprint arXiv:2307.01128 (2023) Carta, S., Giuliani, A., Piano, L., Podda, A.S., Pompianu, L., Tiddia, S.G.: Iterative zero-shot LLM prompting for knowledge graph construction. arXiv preprint arXiv:​2307.​01128 (2023)
2.
Zurück zum Zitat Ding, L., Zhou, S., Xiao, J., Han, J.: Automated construction of theme-specific knowledge graphs. arXiv preprint arXiv:2404.19146 (2024) Ding, L., Zhou, S., Xiao, J., Han, J.: Automated construction of theme-specific knowledge graphs. arXiv preprint arXiv:​2404.​19146 (2024)
3.
Zurück zum Zitat Eberendu, A.C., et al.: Unstructured data: an overview of the data of big data. Int. J. Comput. Trends Technol. 38(1), 46–50 (2016)CrossRef Eberendu, A.C., et al.: Unstructured data: an overview of the data of big data. Int. J. Comput. Trends Technol. 38(1), 46–50 (2016)CrossRef
4.
Zurück zum Zitat Hu, Y., Zou, F., Han, J., Sun, X., Wang, Y.: LLM-TIKG: threat intelligence knowledge graph construction utilizing large language model. Available at SSRN 4671345 (2023) Hu, Y., Zou, F., Han, J., Sun, X., Wang, Y.: LLM-TIKG: threat intelligence knowledge graph construction utilizing large language model. Available at SSRN 4671345 (2023)
5.
Zurück zum Zitat Jin, B., Liu, G., Han, C., Jiang, M., Ji, H., Han, J.: Large language models on graphs: a comprehensive survey. arXiv preprint arXiv:2312.02783 (2023) Jin, B., Liu, G., Han, C., Jiang, M., Ji, H., Han, J.: Large language models on graphs: a comprehensive survey. arXiv preprint arXiv:​2312.​02783 (2023)
6.
Zurück zum Zitat Kabal, O., Harazallah, M., Guillet, F., Ichise, R.: Enhancing domain-independent knowledge graph construction through OpenIE cleaning and LLMs validation (G-T2KG). In: 28th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2024) (2024), to appear Kabal, O., Harazallah, M., Guillet, F., Ichise, R.: Enhancing domain-independent knowledge graph construction through OpenIE cleaning and LLMs validation (G-T2KG). In: 28th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2024) (2024), to appear
7.
Zurück zum Zitat Kommineni, V.K., König-Ries, B., Samuel, S.: From human experts to machines: an LLM supported approach to ontology and knowledge graph construction. arXiv preprint arXiv:2403.08345 (2024) Kommineni, V.K., König-Ries, B., Samuel, S.: From human experts to machines: an LLM supported approach to ontology and knowledge graph construction. arXiv preprint arXiv:​2403.​08345 (2024)
9.
Zurück zum Zitat Nasar, Z., Jaffry, S.W., Malik, M.K.: Named entity recognition and relation extraction: state-of-the-art. ACM Comput. Surv. (CSUR) 54(1), 1–39 (2021)CrossRef Nasar, Z., Jaffry, S.W., Malik, M.K.: Named entity recognition and relation extraction: state-of-the-art. ACM Comput. Surv. (CSUR) 54(1), 1–39 (2021)CrossRef
11.
Zurück zum Zitat Sun, Z., Ting, Y.S., Liang, Y., Duan, N., Huang, S., Cai, Z.: Knowledge graph in astronomical research with large language models: quantifying driving forces in interdisciplinary scientific discovery. arXiv preprint arXiv:2406.01391 (2024) Sun, Z., Ting, Y.S., Liang, Y., Duan, N., Huang, S., Cai, Z.: Knowledge graph in astronomical research with large language models: quantifying driving forces in interdisciplinary scientific discovery. arXiv preprint arXiv:​2406.​01391 (2024)
12.
Zurück zum Zitat Wornow, M., Lozano, A., Dash, D., Jindal, J., Mahaffey, K.W., Shah, N.H.: Zero-shot clinical trial patient matching with LLMs. arXiv preprint arXiv:2402.05125 (2024) Wornow, M., Lozano, A., Dash, D., Jindal, J., Mahaffey, K.W., Shah, N.H.: Zero-shot clinical trial patient matching with LLMs. arXiv preprint arXiv:​2402.​05125 (2024)
13.
Zurück zum Zitat Zhang, Y., et al.: AttacKG+: Boosting attack knowledge graph construction with large language models. arXiv preprint arXiv:2405.04753 (2024) Zhang, Y., et al.: AttacKG+: Boosting attack knowledge graph construction with large language models. arXiv preprint arXiv:​2405.​04753 (2024)
14.
Zurück zum Zitat Zhu, Y., et al.: LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities. arXiv preprint arXiv:2305.13168 (2023) Zhu, Y., et al.: LLMs for knowledge graph construction and reasoning: recent capabilities and future opportunities. arXiv preprint arXiv:​2305.​13168 (2023)
Metadaten
Titel
iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models
verfasst von
Yassir Lairgi
Ludovic Moncla
Rémy Cazabet
Khalid Benabdeslem
Pierre Cléau
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_16