2025 | OriginalPaper | Buchkapitel
iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models
verfasst von : Yassir Lairgi, Ludovic Moncla, Rémy Cazabet, Khalid Benabdeslem, Pierre Cléau
Erschienen in: Web Information Systems Engineering – WISE 2024
Verlag: Springer Nature Singapore
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Abstract
iText2KG
(The code and the dataset are available at https://github.com/AuvaLab/itext2kg), a method for incremental, topic-independent KG construction without post-processing. This plug-and-play, zero-shot method is applicable across a wide range of KG construction scenarios and comprises four modules: Documents Distiller, Incremental Entities Extractor, Incremental Relations Extractor, and Graph Integrator. Our method demonstrates superior performance compared to baseline methods across three scenarios: converting scientific papers to graphs, websites to graphs, and CVs to graphs.