Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Visualization 3/2021

02.01.2021 | Regular Paper

IVDAS: an interactive visual design and analysis system for image data symmetry detection of CNN models

verfasst von: Xiaoyang Han, Han-Wei Shen, Guan Li, Xuyi Lu, Guihua Shan, Yangang Wang

Erschienen in: Journal of Visualization | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Convolutional neural networks (CNNs) have achieved breakthrough performance in image recognition and classification. However, it is still a challenge for CNNs to classify images where the classification results strongly depend on the recognition of globally correlated features, for example, the identification of biomolecular structure symmetry in cryo-electron microscopy images. In this work, we improved the traditional CNNs model to solve the problem of cryo-electron microscopy image symmetry recognition and developed a visualization system to help biological researchers to design the best model. Our system consists of the model overview view, the model structure view, and the case view. The system supports a comprehensive analysis of the model’s recognition accuracy, the number of calculations, and the convolutional layers between different models. It also supports structural analysis of models and visual analysis of specific input images. Through the real cases from the biological researchers, we verify that our system can effectively build a model to identify symmetry.

Graphic abstract

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
Zurück zum Zitat Bairagi VK (2015) Symmetry-based biomedical image compression. J Digit Imaging 28(6):718 CrossRef Bairagi VK (2015) Symmetry-based biomedical image compression. J Digit Imaging 28(6):718 CrossRef
Zurück zum Zitat Celik T (2014) Spatial entropy-based global and local image contrast enhancement. IEEE Trans Image Process 23(12):5298 MathSciNetCrossRef Celik T (2014) Spatial entropy-based global and local image contrast enhancement. IEEE Trans Image Process 23(12):5298 MathSciNetCrossRef
Zurück zum Zitat Chen X, Guan Q, Lo LT, Su S, Ren Z, Ahrens JP, Estrada T (2018) In situ TensorView: in situ visualization of convolutional neural networks. In: 2018 IEEE international conference on big data (big data). IEEE, pp 1899–1904 Chen X, Guan Q, Lo LT, Su S, Ren Z, Ahrens JP, Estrada T (2018) In situ TensorView: in situ visualization of convolutional neural networks. In: 2018 IEEE international conference on big data (big data). IEEE, pp 1899–1904
Zurück zum Zitat Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. Univ Montreal 1341(3):1 Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. Univ Montreal 1341(3):1
Zurück zum Zitat He K, Zhang X, Ren S, Jian S (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR) He K, Zhang X, Ren S, Jian S (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR)
Zurück zum Zitat Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition?. In: 2009 IEEE 12th international conference on computer vision, pp 2146–2153 Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition?. In: 2009 IEEE 12th international conference on computer vision, pp 2146–2153
Zurück zum Zitat Ji Y, Dan CM, Wei Z, Baker TS (2003) Orientation refinement of virus structures with unknown symmetry. In: 17th international parallel and distributed processing symposium (IPDPS 2003), 22–26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings Ji Y, Dan CM, Wei Z, Baker TS (2003) Orientation refinement of virus structures with unknown symmetry. In: 17th international parallel and distributed processing symposium (IPDPS 2003), 22–26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings
Zurück zum Zitat Kinjo AR, Suzuki H, Yamashita R, Ikegawa Y, Kudou T, Igarashi R, Kengaku Y, Cho H, Standley DM, Nakagawa A, Nakamura H (2012) Protein data bank Japan (PDBj): maintaining a structural data archive and resource description framework format”. Nucleic Acids Res 40:453 CrossRef Kinjo AR, Suzuki H, Yamashita R, Ikegawa Y, Kudou T, Igarashi R, Kengaku Y, Cho H, Standley DM, Nakagawa A, Nakamura H (2012) Protein data bank Japan (PDBj): maintaining a structural data archive and resource description framework format”. Nucleic Acids Res 40:453 CrossRef
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25, no 2 Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25, no 2
Zurück zum Zitat Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283 CrossRef Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283 CrossRef
Zurück zum Zitat Lin M, Chen Q, Yan S (2014) Network in network. In: ICLR 2014: international conference on learning representations (ICLR) 2014 Lin M, Chen Q, Yan S (2014) Network in network. In: ICLR 2014: international conference on learning representations (ICLR) 2014
Zurück zum Zitat Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2016) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23(1):91 CrossRef Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2016) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23(1):91 CrossRef
Zurück zum Zitat Rajasegaran J, Jayasundara V, Jayasekara S, Jayasekara H, Seneviratne S, Rodrigo R (2019) DeepCaps: going deeper with capsule networks. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 10,725–10,733 Rajasegaran J, Jayasundara V, Jayasekara S, Jayasekara H, Seneviratne S, Rodrigo R (2019) DeepCaps: going deeper with capsule networks. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp 10,725–10,733
Zurück zum Zitat Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71 CrossRef Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32(1):71 CrossRef
Zurück zum Zitat Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K (2002) New electron microscopy database and deposition system. Trends Biochem Sci 27(11):589 CrossRef Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K (2002) New electron microscopy database and deposition system. Trends Biochem Sci 27(11):589 CrossRef
Zurück zum Zitat Velankar S, Best C, Beuth B, Boutselakis CH, Cobley N, Silva AWSD, Dimitropoulos D, Golovin A, Hirshberg M, John M, Krissinel EB, Newman R, Oldfield T, Pajon A, Penkett CJ, Pineda-Castillo J, Sahni G, Sen S, Slowley R, Suarez-Uruena A, Swaminathan J, van Ginkel G, Vranken WF, Henrick K, Kleywegt GJ (2010) PDBe: protein data bank in Europe. Nucleic Acids Res 40:285 Velankar S, Best C, Beuth B, Boutselakis CH, Cobley N, Silva AWSD, Dimitropoulos D, Golovin A, Hirshberg M, John M, Krissinel EB, Newman R, Oldfield T, Pajon A, Penkett CJ, Pineda-Castillo J, Sahni G, Sen S, Slowley R, Suarez-Uruena A, Swaminathan J, van Ginkel G, Vranken WF, Henrick K, Kleywegt GJ (2010) PDBe: protein data bank in Europe. Nucleic Acids Res 40:285
Zurück zum Zitat Zeiler MD, Fergus R (2014) ‘Visualizing and understanding convolutional networks. In: 13th European conference on computer vision, ECCV 2014, pp 818–833 Zeiler MD, Fergus R (2014) ‘Visualizing and understanding convolutional networks. In: 13th European conference on computer vision, ECCV 2014, pp 818–833
Zurück zum Zitat Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ (2003) Cytoplasmic Polyhedrosis Virus Structure at 8 Ã by electron cryomicroscopy: structural basis of capsid stability and mrna processing regulation. Structure 11(6):651 CrossRef Zhou ZH, Zhang H, Jakana J, Lu XY, Zhang JQ (2003) Cytoplasmic Polyhedrosis Virus Structure at 8 Ã by electron cryomicroscopy: structural basis of capsid stability and mrna processing regulation. Structure 11(6):651 CrossRef
Metadaten
Titel
IVDAS: an interactive visual design and analysis system for image data symmetry detection of CNN models
verfasst von
Xiaoyang Han
Han-Wei Shen
Guan Li
Xuyi Lu
Guihua Shan
Yangang Wang
Publikationsdatum
02.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Visualization / Ausgabe 3/2021
Print ISSN: 1343-8875
Elektronische ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00721-3

Weitere Artikel der Ausgabe 3/2021

Journal of Visualization 3/2021 Zur Ausgabe

Premium Partner